Tea leaf paradox

Last updated
The tea leaves collect in the middle and the bottom, instead of along the rim.
The blue line is the secondary flow that pushes the tea leaves to the middle of the bottom. Tea leaf Paradox Illustration.svg
The blue line is the secondary flow that pushes the tea leaves to the middle of the bottom.
Visualization of secondary flow in river bend model (A.Ya.Milovich, 1913, flow from right to left). Near-bottom streamlines are marked with dye injected by a pipette. Visualization-of-secondary-flow-in-river-bend-model-(A.Ya.Milovich, 1913).jpg
Visualization of secondary flow in river bend model (A.Ya.Milovich, 1913, flow from right to left). Near-bottom streamlines are marked with dye injected by a pipette.

In fluid dynamics, the tea leaf paradox is a phenomenon where tea leaves in a cup of tea migrate to the center and bottom of the cup after being stirred rather than being forced to the edges of the cup, as would be expected in a spiral centrifuge.

Contents

The correct physical explanation of the paradox was for the first time given by James Thomson in 1857. He correctly connected the appearance of secondary flow (both Earth atmosphere and tea cup) with ″friction on the bottom″. [2] The formation of secondary flows in an annular channel was theoretically treated by Joseph Valentin Boussinesq as early as in 1868. [3] The migration of near-bottom particles in river-bend flows was experimentally investigated by A. Ya. Milovich in 1913. [1] The solution first came from Albert Einstein in a 1926 paper in which he explained the erosion of river banks, and repudiated Baer's law. [4] [5]

Explanation

The stirring makes the water spin in the cup, causing a centrifugal force outwards. Near the bottom however, the water is slowed by friction. Thus the centrifugal force is weaker near the bottom than higher up, leading to a secondary circular (helical) flow that goes outwards at the top, down along the outer edge, inwards along the bottom, bringing the leaves to the center, and then up again. [5]

Applications

The phenomenon has been used to develop a new technique to separate red blood cells from blood plasma, [6] [7] to understand atmospheric pressure systems, [8] and in the process of brewing beer to separate out coagulated trub in the whirlpool. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Coriolis force</span> Force on objects moving within a reference frame that rotates with respect to an inertial frame

In physics, the Coriolis force is an inertial force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

<span class="mw-page-title-main">Friction</span> Force resisting sliding motion

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal.

<span class="mw-page-title-main">Gravity</span> Attraction of masses and energy

In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction which causes mutual attraction between all things that have mass. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.

<span class="mw-page-title-main">Convection</span> Fluid flow that occurs due to heterogeneous fluid properties and body forces.

Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity. When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

<span class="mw-page-title-main">Bernoulli's principle</span> Principle relating to fluid dynamics

Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or the fluid's potential energy. The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form.

<span class="mw-page-title-main">Centrifuge</span> Device using centrifugal force to separate fluids

A centrifuge is a device that uses centrifugal force to subject a specimen to a specified constant force, for example to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities or liquids from solids. It works by causing denser substances and particles to move outward in the radial direction. At the same time, objects that are less dense are displaced and moved to the centre. In a laboratory centrifuge that uses sample tubes, the radial acceleration causes denser particles to settle to the bottom of the tube, while low-density substances rise to the top. A centrifuge can be a very effective filter that separates contaminants from the main body of fluid.

<span class="mw-page-title-main">Dynamo theory</span> Mechanism by which a celestial body generates a magnetic field

In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.

<span class="mw-page-title-main">Oxbow lake</span> U-shaped lake or pool

An oxbow lake is a U-shaped lake or pool that forms when a wide meander of a river is cut off, creating a free-standing body of water. The word "oxbow" can also refer to a U-shaped bend in a river or stream, whether or not it is cut off from the main stream.

<span class="mw-page-title-main">Turbulence modeling</span> Use of mathematical models to simulate turbulent flow

In fluid dynamics, turbulence modeling is the construction and use of a mathematical model to predict the effects of turbulence. Turbulent flows are commonplace in most real-life scenarios. In spite of decades of research, there is no analytical theory to predict the evolution of these turbulent flows. The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows.

<span class="mw-page-title-main">Meander</span> One of a series of curves in a channel of a matured stream

A meander is one of a series of regular sinuous curves in the channel of a river or other watercourse. It is produced as a watercourse erodes the sediments of an outer, concave bank and deposits sediments on an inner, convex bank which is typically a point bar. The result of this coupled erosion and sedimentation is the formation of a sinuous course as the channel migrates back and forth across the axis of a floodplain.

<span class="mw-page-title-main">Marshall Rosenbluth</span> American physicist

Marshall Nicholas Rosenbluth was an American plasma physicist and member of the National Academy of Sciences, and member of the American Philosophical Society. In 1997 he was awarded the National Medal of Science for discoveries in controlled thermonuclear fusion, contributions to plasma physics, and work in computational statistical mechanics. He was also a recipient of the E.O. Lawrence Prize (1964), the Albert Einstein Award (1967), the James Clerk Maxwell Prize for Plasma Physics (1976), the Enrico Fermi Award (1985), and the Hannes Alfvén Prize (2002).

<span class="mw-page-title-main">Carl Wilhelm Oseen</span> Swedish theoretical physicist (1879–1944)

Carl Wilhelm Oseen was a theoretical physicist in Uppsala and Director of the Nobel Institute for Theoretical Physics in Stockholm.

In geography, the Baer–Babinet law, sometimes called Baer's law, identifies a way in which the process of formation of rivers is influenced by the rotation of the Earth. According to the hypothesis, because of the rotation of the Earth, erosion occurs mostly on the right banks of rivers in the Northern Hemisphere, and in the Southern Hemisphere on the left banks.

<span class="mw-page-title-main">Point bar</span> Landform related to streams and rivers

A point bar is a depositional feature made of alluvium that accumulates on the inside bend of streams and rivers below the slip-off slope. Point bars are found in abundance in mature or meandering streams. They are crescent-shaped and located on the inside of a stream bend, being very similar to, though often smaller than, towheads, or river islands.

In fluid dynamics, flow can be decomposed into primary flow plus secondary flow, a relatively weaker flow pattern superimposed on the stronger primary flow pattern. The primary flow is often chosen to be an exact solution to simplified or approximated governing equations, such as potential flow around a wing or geostrophic current or wind on the rotating Earth. In that case, the secondary flow usefully spotlights the effects of complicated real-world terms neglected in those approximated equations. For instance, the consequences of viscosity are spotlighted by secondary flow in the viscous boundary layer, resolving the tea leaf paradox. As another example, if the primary flow is taken to be a balanced flow approximation with net force equated to zero, then the secondary circulation helps spotlight acceleration due to the mild imbalance of forces. A smallness assumption about secondary flow also facilitates linearization.

Robert Harry Kraichnan, a resident of Santa Fe, New Mexico, was an American theoretical physicist best known for his work on the theory of fluid turbulence.

<span class="mw-page-title-main">Plasma actuator</span> Type of actuator

Plasma actuators are a type of actuator currently being developed for aerodynamic flow control. Plasma actuators impart force in a similar way to ionocraft. Plasma flows control has drawn considerable attention and been used in boundary layer acceleration, airfoil separation control, forebody separation control, turbine blade separation control, axial compressor stability extension, heat transfer and high-speed jet control.

<span class="mw-page-title-main">Meander cutoff</span>

A meander cutoff is a natural form of a cutting or cut in a river occurs when a pronounced meander (hook) in a river is breached by a flow that connects the two closest parts of the hook to form a new channel, a full loop. The steeper drop in gradient (slope) causes the river flow gradually to abandon the meander which will silt up with sediment from deposition. Cutoffs are a natural part of the evolution of a meandering river. Rivers form meanders as they flow laterally downstream, see sinuosity.

<span class="mw-page-title-main">Subhasish Dey</span>

Subhasish Dey is a hydraulician and educator. He is known for his research on the hydrodynamics and acclaimed for his contributions in developing theories and solution methodologies of various problems on hydrodynamics, turbulence, boundary layer, sediment transport and open channel flow. He is currently a distinguished professor of Indian Institute of Technology Jodhpur (2023–). Before, he worked as a professor of the department of civil engineering, Indian Institute of Technology Kharagpur (1998–2023), where he served as the head of the department during 2013–15 and held the position of Brahmaputra Chair Professor during 2009–14 and 2015. He also held the adjunct professor position in the Physics and Applied Mathematics Unit at Indian Statistical Institute Kolkata during 2014–19. Besides he has been named a distinguished visiting professor at the Tsinghua University in Beijing, China.

This timeline describes the major developments, both experimental and theoretical understanding of fluid mechanics and continuum mechanics. This timeline includes developments in:

References

  1. 1 2 His results are cited in: Joukovsky N.E. (1914). "On the motion of water at a turn of a river". Matematicheskii Sbornik . 29. Reprinted in: Collected works. Vol. 4. Moscow; Leningrad. 1937. pp. 193–216, 231–233 (abstract in English).{{cite book}}: CS1 maint: location missing publisher (link)
  2. James Thomson, On the grand currents of atmospheric circulation (1857). Collected Papers in Physics and Engineering, Cambridge Univ., 1912, 144-148 djvu file
  3. Boussinesq J. (1868). "Mémoire sur l'influence des frottements dans les mouvements réguliers des fluides" (PDF). Journal de mathématiques pures et appliquées. 2e Série. 13: 377–424. Archived from the original (PDF) on March 17, 2022.
  4. Bowker, Kent A. (1988). "Albert Einstein and Meandering Rivers". Earth Science History. 1 (1): 45. Bibcode:1988ESHis...7...45B. doi:10.17704/eshi.7.1.yk72n55q84qxu5n6 . Retrieved 2008-12-28.
  5. 1 2 Einstein, Albert (March 1926). "Die Ursache der Mäanderbildung der Flußläufe und des sogenannten Baerschen Gesetzes". Die Naturwissenschaften . Berlin / Heidelberg: Springer. 14 (11): 223–4. Bibcode:1926NW.....14..223E. doi:10.1007/BF01510300. S2CID   39899416. English translation: The Cause of the Formation of Meanders in the Courses of Rivers and of the So-Called Baer's Law, accessed 2017-12-12.
  6. Arifin, Dian R.; Leslie Y. Yeo; James R. Friend (20 December 2006). "Microfluidic blood plasma separation via bulk electrohydrodynamic flows". Biomicrofluidics. American Institute of Physics. 1 (1): 014103 (CID). doi:10.1063/1.2409629. PMC   2709949 . PMID   19693352. Archived from the original on 9 December 2012. Retrieved 2008-12-28.
  7. Pincock, Stephen (17 January 2007). "Einstein's tea-leaves inspire new gadget". ABC Online . Retrieved 2008-12-28.
  8. Tandon, Amit; Marshall, John (2010). "Einstein's Tea Leaves and Pressure Systems in the Atmosphere". The Physics Teacher. 48 (5): 292–295. Bibcode:2010PhTea..48..292T. doi: 10.1119/1.3393055 . hdl: 1721.1/118473 .
  9. Bamforth, Charles W. (2003). Beer: tap into the art and science of brewing (2nd ed.). Oxford University Press. p.  56. ISBN   978-0-19-515479-5.