Coloroid

Last updated
The Coloroid color space, showing the cylindrical geometry of luminosity (V), hue (A) and saturation (T), the relative components of pure hue (p), white (w) and black (s) that can be used to mix any hue within a single hue plane, and the relative areas of all possible (spectrally defined) colors and material (pigmented surfaces) colors according to Coloroid. Coloroid.png
The Coloroid color space, showing the cylindrical geometry of luminosity (V), hue (A) and saturation (T), the relative components of pure hue (p), white (w) and black (s) that can be used to mix any hue within a single hue plane, and the relative areas of all possible (spectrally defined) colors and material (pigmented surfaces) colors according to Coloroid.

The Coloroid Color System is a color space developed between 1962 and 1980 by Antal Nemcsics at the Budapest University of Technology and Economics for use by "architects and visual constructors". Since August 2000, the Coloroid has been registered as Hungarian Standard MSZ 7300. [1]

Contents

Like the OSA-UCS and Munsell systems, the Coloroid attempts to model a perceptually uniform color space or UCS. However, the UCS standard applied in the Coloroid system is equal appearing increments in color when the entire range of colors is presented to the viewer, in contrast to the standard of equal "just noticeable" or small color differences between pairs of similar colors presented in isolation. [2] [3]

Colors in the Coloroid color space are fundamentally specified according to the perceptual attributes of "luminosity" (luminance factor, V), "saturation" (excitation purity, T) and hue (the matching or dominant spectral wavelength, A).

The VAT components are used to define a cylindrical color geometry, with V as the achromatic vertical axis (lightness or brightness), T as the horizontal distance from the achromatic axis (chroma), and A as the hue angle around the hue circle. The circumferential limits of this cylinder are defined by the spectrum locus, or colors as they appear in a single wavelength of light (or a mixture of single "violet" and "red" wavelengths); this ambit varies vertically in V around the hue circle, showing whether the relative luminance or brightness of each wavelength is high (yellow hue) or low (violet blue hue). This defines the outer perceptual limits of the color space.

Within this is the smaller perceptual volume defined by the limit of colors it is possible to reproduce with physical media (material colors). Here the VAT perceptual attributes can be approximately matched using the three stimulus or material color components of pure hue or pure colorant (p), white colorant (w) and black colorant (s) in relative proportions whose sum must always equal 1. (Implicitly, p may be any matching single "spot" colorant or matching mixture of two "primary" colorants.)

The Coloroid technical documentation defines the conceptual equations necessary to transform the Coloroid perceptual components VAT into the corresponding stimulus components, using the CIE XYZ 1931 color-matching functions with the D65 CIE illuminant. Hues are identified according to the hue angle ψ, measured on the CIE 1931 xy chromaticity plane. These stimulus attributes in turn must be standardized or gamut mapped into a specific colorant system or color reproduction technology in order to reproduce the Coloroid color space as physical color exemplars or a color atlas. However, a Coloroid Colour Atlas [4] is available that provides color exemplars at 16 levels of lightness out to as many as 13 increments in saturation for each of the 48 hue planes.

Within the Coloroid system, color harmonies or "harmonics" can be defined through simple linear or geometrical combinations of colors. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Primary color</span> Fundamental color in color mixing

A set of primary colors or primary colours consists of colorants or colored lights that can be mixed in varying amounts to produce a gamut of colors. This is the essential method used to create the perception of a broad range of colors in, e.g., electronic displays, color printing, and paintings. Perceptions associated with a given combination of primary colors can be predicted by an appropriate mixing model that reflects the physics of how light interacts with physical media, and ultimately the retina. The most common color mixing models are the additive primary colors and the subtractive primary colors.

<span class="mw-page-title-main">Hue</span> Property of a color

In color theory, hue is one of the main properties of a color, defined technically in the CIECAM02 model as "the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, orange, yellow, green, blue, violet," within certain theories of color vision.

<span class="mw-page-title-main">Munsell color system</span> Color space

In colorimetry, the Munsell color system is a color space that specifies colors based on three properties of color: hue, value (lightness), and chroma. It was created by Albert H. Munsell in the first decade of the 20th century and adopted by the United States Department of Agriculture (USDA) as the official color system for soil research in the 1930s.

<span class="mw-page-title-main">HSL and HSV</span> Alternative representations of the RGB color model

HSL and HSV are the two most common cylindrical-coordinate representations of points in an RGB color model. The two representations rearrange the geometry of RGB in an attempt to be more intuitive and perceptually relevant than the cartesian (cube) representation. Developed in the 1970s for computer graphics applications, HSL and HSV are used today in color pickers, in image editing software, and less commonly in image analysis and computer vision.

<span class="mw-page-title-main">Chromaticity</span> Specification of color hue and saturation

Chromaticity is an objective specification of the quality of a color regardless of its luminance. Chromaticity consists of two independent parameters, often specified as hue (h) and colorfulness (s), where the latter is alternatively called saturation, chroma, intensity, or excitation purity. This number of parameters follows from trichromacy of vision of most humans, which is assumed by most models in color science.

<span class="mw-page-title-main">CIELAB color space</span> Standard color space with color-opponent values

The CIELAB color space, also referred to as L*a*b*, is a color space defined by the International Commission on Illumination in 1976. It expresses color as three values: L* for perceptual lightness and a* and b* for the four unique colors of human vision: red, green, blue and yellow. CIELAB was intended as a perceptually uniform space, where a given numerical change corresponds to a similar perceived change in color. While the LAB space is not truly perceptually uniform, it nevertheless is useful in industry for detecting small differences in color.

<span class="mw-page-title-main">Colorfulness</span> Perceived intensity of a specific color

Colorfulness, chroma and saturation are attributes of perceived color relating to chromatic intensity. As defined formally by the International Commission on Illumination (CIE) they respectively describe three different aspects of chromatic intensity, but the terms are often used loosely and interchangeably in contexts where these aspects are not clearly distinguished. The precise meanings of the terms vary by what other functions they are dependent on.

In color science, a color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components. When this model is associated with a precise description of how the components are to be interpreted, taking account of visual perception, the resulting set of colors is called "color space."

<span class="mw-page-title-main">Abney effect</span> Perceived hue shift when white light is added to a monochromatic light source

The Abney effect or the purity-on-hue effect describes the perceived hue shift that occurs when white light is added to a monochromatic light source.

Relative luminance follows the photometric definition of luminance including spectral weighting for human vision, but while luminance is a measure of light in units such as , relative luminance values are normalized as 0.0 to 1.0, with 1.0 being a theoretical perfect reflector of 100% reference white. Like the photometric definition, it is related to the luminous flux density in a particular direction, which is radiant flux density weighted by the luminous efficiency function of the CIE Standard Observer.

<span class="mw-page-title-main">Lightness</span> Property of a color

Lightness is a visual perception of the luminance of an object. It is often judged relative to a similarly lit object. In colorimetry and color appearance models, lightness is a prediction of how an illuminated color will appear to a standard observer. While luminance is a linear measurement of light, lightness is a linear prediction of the human perception of that light.

In colorimetry, the CIE 1976L*, u*, v*color space, commonly known by its abbreviation CIELUV, is a color space adopted by the International Commission on Illumination (CIE) in 1976, as a simple-to-compute transformation of the 1931 CIE XYZ color space, but which attempted perceptual uniformity. It is extensively used for applications such as computer graphics which deal with colored lights. Although additive mixtures of different colored lights will fall on a line in CIELUV's uniform chromaticity diagram, such additive mixtures will not, contrary to popular belief, fall along a line in the CIELUV color space unless the mixtures are constant in lightness.

<span class="mw-page-title-main">CIE 1960 color space</span>

The CIE 1960 color space ("CIE 1960 UCS", variously expanded Uniform Color Space, Uniform Color Scale, Uniform Chromaticity Scale, Uniform Chromaticity Space) is another name for the (u, v) chromaticity space devised by David MacAdam.

The CIE 1964 (U*, V*, W*) color space, also known as CIEUVW, is based on the CIE 1960 UCS:

<span class="mw-page-title-main">Color space</span> Standard that defines a specific range of colors

A color space is a specific organization of colors. In combination with color profiling supported by various physical devices, it supports reproducible representations of color – whether such representation entails an analog or a digital representation. A color space may be arbitrary, i.e. with physically realized colors assigned to a set of physical color swatches with corresponding assigned color names, or structured with mathematical rigor. A "color space" is a useful conceptual tool for understanding the color capabilities of a particular device or digital file. When trying to reproduce color on another device, color spaces can show whether shadow/highlight detail and color saturation can be retained, and by how much either will be compromised.

<span class="mw-page-title-main">Deane B. Judd</span> American color scientist (1900–1972)

Deane Brewster Judd was an American physicist who made important contributions to the fields of colorimetry, color discrimination, color order, and color vision.

<span class="mw-page-title-main">Helmholtz–Kohlrausch effect</span> Perceptual phenomenon

The Helmholtz–Kohlrausch effect is a perceptual phenomenon wherein the intense saturation of spectral hue is perceived as part of the color's luminance. This brightness increase by saturation, which grows stronger as saturation increases, might better be called chromatic luminance, since "white" or achromatic luminance is the standard of comparison. It appears in both self-luminous and surface colors, although it is most pronounced in spectral lights.

A color appearance model (CAM) is a mathematical model that seeks to describe the perceptual aspects of human color vision, i.e. viewing conditions under which the appearance of a color does not tally with the corresponding physical measurement of the stimulus source.

<span class="mw-page-title-main">HCL color space</span> Color space model

HCL (Hue-Chroma-Luminance) or LCh refers to any of the many cylindrical color space models that are designed to accord with human perception of color with the three parameters. Lch has been adopted by information visualization practitioners to present data without the bias implicit in using varying saturation. They are, in general, designed to have characteristics of both cylindrical translations of the RGB color space, such as HSL and HSV, and the L*a*b* color space. Some conflicting definitions of the terms are:

References

  1. Nemcsics, Antal (2003). "Coloroid Colour System". Hungarian Electronic Journal of Sciences.
  2. Nemcsics, Antal (1980). "The Coloroid color space". Color Research & Application. 5 (2): 113–120. doi:10.1002/col.5080050214. Archived from the original on 2013-01-05.
  3. Nemcsics, Antal (1987). "Color space of the Coloroid color system". Color Research & Application. 12 (3): 135–146. doi:10.1002/col.5080120307.[ dead link ]
  4. Nemcsics, Antal (1985). Coloroid Colour Atlas. Innofinance (Révai Printing House), Budapest.
  5. Neuman, László, Nemcsics, Antal & Neuman, Attila (2005). Computational Color Harmony based on Coloroid System. Institute of Computer Graphics and Algorithms, Vienna University of Technology.{{cite book}}: CS1 maint: multiple names: authors list (link)