Continuous emissions monitoring system

Last updated

Continuous emission monitoring systems (CEMS) are used as a tool to monitor the effluent gas streams resulting from combustion in industrial processes. CEMS can measure flue gas for oxygen, carbon monoxide and carbon dioxide to provide information for combustion control in industrial settings. [1] [2] They are also used as a means to comply with air emission standards such as the United States Environmental Protection Agency's (EPA) Acid Rain Program, [3] other US federal emission programs, or state permitted emission standards. CEMS typically consist of analyzers to measure gas concentrations within the stream, equipment to direct a sample of that gas stream to the analyzers if they are remote, equipment to condition the sample gas by removing water and other components that could interfere with the reading, pneumatic plumbing with valves that can be controlled by a PLC to route the sample gas to and away from the analyzers, a calibration and maintenance system that allows for the injection of calibration gases into the sample line, and a Data Acquisition and Handling System (DAHS) that collects and stores each data point and can perform necessary calculations required to get total mass emissions. A CEMS operates at all times even if the process it measures is not on. They can continuously collect, record and report emissions data for process monitoring and/or for compliance purposes.

Contents

The standard CEM system consists of a sample probe, filter, sample line (umbilical), gas conditioning system, calibration gas system, and a series of gas analyzers which reflect the parameters being monitored. Typical monitored emissions include: sulfur dioxide, nitrogen oxides, carbon monoxide, carbon dioxide, hydrogen chloride, airborne particulate matter, mercury, volatile organic compounds, and oxygen. CEM systems can also measure air flow, flue gas opacity and moisture. A monitoring system that measures particulate matter is referred to as a PEMS.

In the U.S., the EPA requires a data acquisition and handling system to collect and report the data. Measurements of concentration can be converted to mass/hour by including flow rate measurements. The types of gases being measured and the calculations required are dependent upon the source type and each source type has its own subpart under 40 CFR part 60 and part 75. [4] SO
2
emissions are measured in pounds per hour using both an SO
2
pollutant concentration monitor and a volumetric flow monitor. For NOx, both a NOx pollutant concentration monitor and a diluent gas monitor are used to determine the emissions rate in weight per volume or weight per heat value (for example lbs/million Btu, lbs/ft3, kg/kWh or kg/m3). Opacity measurements are sometimes required, depending on the source type. CO2 measuring is sometimes a requirement, however if monitored, a CO2 or oxygen monitor plus a flow monitor should be used. The DAHS must be able to collect, record and store data, usually at 1-minute intervals. For compliance purposes, a DAHS must be in continuous operation 24/7/365 even when no process is on. For a valid measurement, the DAHS must record at least one reading every 15 minutes for 3 out of 4 quarters. The readings are then averaged hourly. [5]

Operation

A small sample of flue gas is extracted, by means of a pump, into the CEM system via a sample probe. Facilities that combust fossil fuels often use a dilution-extractive probe to dilute the sample with clean, dry air to a ratio typically between 50:1 to 200:1, but usually 100:1. Dilution is used because pure flue gas can be hot, wet and, with some pollutants, sticky. Once diluted to the appropriate ratio, the sample is transported through a sample line (typically referred to as an umbilical) to a manifold from which individual analyzers may extract a sample. Gas analyzers employ various techniques to accurately measure concentrations. Some commonly used techniques include: infrared and ultraviolet adsorption, chemiluminescence, fluorescence and beta ray absorption. After analysis, the gas exits the analyzer to a common manifold to all analyzers where it is vented out of doors. A Data Acquisition and Handling System (DAHS) receives the signal output from each analyzer in order to collect and record emissions data. [6]

Another sample extraction method used in industrial sources and utility sources with low emission rates, is commonly referred to as a "dry extractive", "hot dry" extractive, or "direct" CEMS. The sample is not diluted, but is carried along a heated sample line at high temperature into a sample conditioning unit. The sample is filtered to remove particulate matter and dried, usually with a chiller, to remove moisture. Once conditioned, the sample enters a sampling manifold and is measured by various gas analyzers, typically NOx and O2 (and sometimes CO) for combustion turbines and engines running natural gas or diesel. NOx analyzers typically work using chemiluminescence. O2 analyzers a magnetic field which attracts O2 to measure the concentration. The O2 causes movement of a suspended mirror within the analyzer which then changes the amount of light being reflected by that mirror onto a photocell. The amount of current required to move the mirror back to center is proportional to the O2 concentration. The ability to measure % oxygen in the sample is required to perform the required calculations.

Quality assurance

Accuracy of the system is demonstrated in several ways. An internal quality assurance check is achieved by daily introduction of a certified concentration of gas to the sample probe. The CEMS measurement is then compared against the known concentration to arrive at a Calibration Error percentage. A zero gas reading is also taken and compared. If the calibration error % exceeds 2x the performance specification for 5 consecutive days or 4x the performance specification in 24 hours, the CEMS is considered out of control meaning the data can not be relied upon as accurate until it is brought back into control. Data substitution will be used for out of control periods. The data substitution method is generally not advantageous so it is critical to get the CEMS back into control as soon as possible.

The EPA also allows for the use of Continuous Emissions Monitoring Calibration Systems which dilute gases to generate calibration standards. [7] The analyzer reading must be accurate to a certain percentage. The percent accuracy can vary, but most fall between 2.5% and 5%. In power stations affected by the Acid Rain Program, annual (or bi-annual) certification of the system must be performed by an independent firm. The firm will have an independent CEM system temporarily in place to collect emissions data in parallel with the plant CEMS. This testing is referred to as a Relative Accuracy Test Audit (RATA).

In the U.S., periodic evaluations of the equipment must be reported and recorded. [5] This includes daily calibration error tests, daily interference tests for flow monitors, and semi-annual (or annual) RATA and bias tests. [8] CEMS equipment is expensive and not always affordable for a facility. In such cases, a facility will install non-EPA compliant analysis equipment at the emissions point. Once yearly, for the equipment evaluation, a mobile CEMS company measures emissions with compliant equipment. The results are then compared to the non-compliant analyzer system. [9]

Related Research Articles

Water quality Chemical, physical, and biological characteristics of water based on the standards of its usage

Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through treatment of the water, can be assessed. The most common standards used to monitor and assess water quality convey the health of ecosystems, safety of human contact, extend of water pollution and condition of drinking water. Water quality has a significant impact on water supply and oftentimes determines supply options.

Chemometrics is the science of extracting information from chemical systems by data-driven means. Chemometrics is inherently interdisciplinary, using methods frequently employed in core data-analytic disciplines such as multivariate statistics, applied mathematics, and computer science, in order to address problems in chemistry, biochemistry, medicine, biology and chemical engineering. In this way, it mirrors other interdisciplinary fields, such as psychometrics and econometrics.

Automated analyser

An automated analyser is a medical laboratory instrument designed to measure different chemicals and other characteristics in a number of biological samples quickly, with minimal human assistance. These measured properties of blood and other fluids may be useful in the diagnosis of disease.

Biochemical oxygen demand Oxygen needed to remove organics from water

Biochemical oxygen demand (BOD) is the amount of dissolved oxygen (DO) needed by aerobic biological organisms to break down organic material present in a given water sample at certain temperature over a specific time period. The BOD value is most commonly expressed in milligrams of oxygen consumed per litre of sample during 5 days of incubation at 20 °C and is often used as a surrogate of the degree of organic pollution of water.

Data logger Recording device

A data logger is an electronic device that records data over time or in relation to location either with a built in instrument or sensor or via external instruments and sensors. Increasingly, but not entirely, they are based on a digital processor, and called digital data loggers (DDL). They generally are small, battery powered, portable, and equipped with a microprocessor, internal memory for data storage, and sensors. Some data loggers interface with a personal computer, and use software to activate the data logger and view and analyze the collected data, while others have a local interface device and can be used as a stand-alone device.

An oxygen sensor (or lambda sensor, where lambda refers to air–fuel equivalence ratio, usually denoted by λ) is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analysed.

Total organic carbon

Total organic carbon (TOC) is the amount of carbon found in an organic compound and is often used as a non-specific indicator of water quality or cleanliness of pharmaceutical manufacturing equipment. TOC may also refer to the amount of organic carbon in soil, or in a geological formation, particularly the source rock for a petroleum play; 2% is a rough minimum. For marine surface sediments average TOC content is 0.5% in the deep ocean, and 2% along the eastern margins.

Eddy covariance

The eddy covariance technique is a key atmospheric measurement technique to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The method analyses high-frequency wind and scalar atmospheric data series, gas, energy, and momentum, which yields values of fluxes of these properties. It is a statistical method used in meteorology and other applications to determine exchange rates of trace gases over natural ecosystems and agricultural fields, and to quantify gas emissions rates from other land and water areas. It is frequently used to estimate momentum, heat, water vapour, carbon dioxide and methane fluxes.

A particle counter is used for monitoring and diagnosing particle contamination within specific clean media, including air, water and chemicals. Particle counters are used in a variety of applications in support of clean manufacturing practices, industries include: electronic components and assemblies, pharmaceutical drug products and medical devices, and industrial technologies such as oil and gas.

Respirometry is a general term that encompasses a number of techniques for obtaining estimates of the rates of metabolism of vertebrates, invertebrates, plants, tissues, cells, or microorganisms via an indirect measure of heat production (calorimetry).

Moisture analysis covers a variety of methods for measuring moisture content in solids, liquids, or gases. For example, moisture is a common specification in commercial food production. There are many applications where trace moisture measurements are necessary for manufacturing and process quality assurance. Trace moisture in solids must be known in processes involving plastics, pharmaceuticals and heat treatment. Fields that require moisture measurement in gasses or liquids include hydrocarbon processing, pure semiconductor gases, bulk pure or mixed gases, dielectric gases such as those in transformers and power plants, and natural gas pipeline transport.

FLUXNET

FLUXNET is a global network of micrometeorological tower sites that use eddy covariance methods to measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. FLUXNET is a global 'network of regional networks' that serves to provide an infrastructure to compile, archive and distribute data for the scientific community. The most recent FLUXNET data product, FLUXNET2015, is hosted by the Lawrence Berkeley National Laboratory (USA) and is publicly available for download. Currently there are over 1000 active and historic flux measurement sites.

Automated radioxenon sampler analyzer

The automated radioxenon sampler-analyzer (ARSA) was designed by the Pacific Northwest National Laboratory in the late 1990s with funding and support from the U.S. Department of Energy. The ARSA system automatically collects and measures radioxenon from the air.

A gas detector is a device that detects the presence of gases in an area, often as part of a safety system. A gas detector can sound an alarm to operators in the area where the leak is occurring, giving them the opportunity to leave. This type of device is important because there are many gases that can be harmful to organic life, such as humans or animals.

Particle size analysis

Particle size analysis, particle size measurement, or simply particle sizing, is the collective name of the technical procedures, or laboratory techniques which determines the size range, and/or the average, or mean size of the particles in a powder or liquid sample.

Environmental monitoring

Environmental monitoring describes the processes and activities that need to take place to characterize and monitor the quality of the environment. Environmental monitoring is used in the preparation of environmental impact assessments, as well as in many circumstances in which human activities carry a risk of harmful effects on the natural environment. All monitoring strategies and programs have reasons and justifications which are often designed to establish the current status of an environment or to establish trends in environmental parameters. In all cases, the results of monitoring will be reviewed, analyzed statistically, and published. The design of a monitoring program must therefore have regard to the final use of the data before monitoring starts.

Greenhouse gas monitoring Measurement of greenhouse gas emissions and levels

Greenhouse gas monitoring is the direct measurement of greenhouse gas emissions and levels. There are several different methods of measuring carbon dioxide concentrations in the atmosphere, including infrared analyzing and manometry. Methane and nitrous oxide are measured by other instruments. Greenhouse gases are measured from space such as by the Orbiting Carbon Observatory and networks of ground stations such as the Integrated Carbon Observation System.

Gas blending is the process of mixing gases for a specific purpose where the composition of the resulting mixture is specified and controlled. A wide range of applications include scientific and industrial processes, food production and storage and breathing gases.

Air pollution measurement is the process of collecting and measuring the components of air pollution, notably gases and particulates. The earliest devices used to measure pollution include rain gauges, Ringelmann charts for measuring smoke, and simple soot and dust collectors known as deposit gauges. Modern air pollution measurement is largely automated and carried out using many different devices and techniques. These range from simple absorbent test tubes known as diffusion tubes through to highly sophisticated chemical and physical sensors that give almost real-time pollution measurements, which are used to generate air quality indexes.

Workplace exposure monitoring is the monitoring of substances in a workplace that are chemical or biological hazards. It is performed in the context of workplace exposure assessment and risk assessment. Exposure monitoring analyzes hazardous substances in the air or on surfaces of a workplace, and is complementary to biomonitoring, which instead analyzes toxicants or their effects within workers.

References

  1. The Babcock & Wilcox Company (2005). Steam: its generation and use. The Babcock & Wilcox Company. pp. 36–5. ISBN   0-9634570-1-2.
  2. [Jahnke, James] Company (2001). Continuous Emissions Monitoring Systems:2nd Edition. Wiley. ISBN   978-0471292272.
  3. United States Code of Federal Regulations, Title 40, Part 60, 63, 72, and 75
  4. https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=1134dfa8ef4327a6889f0bd9c267b205&mc=true&n=pt40.7.60&r=PART&ty=HTML
  5. 1 2 "Continuous Emissions Monitoring Fact Sheet". US EPA. Archived from the original on February 11, 2009.
  6. "Tier 2 Generation Capital Projects". www.pnm.com. Retrieved 23 February 2016.
  7. "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards, "EPA-600/R93/224. Revised September 1993.
  8. "Specifications and Test Procedures for Total Hydrocarbon Continuous Monitoring Systems in Stationary Sources" (PDF). www3.epa.gov. Retrieved 23 February 2016.
  9. "Flue Gas & Emissions Analyzers | Nova Gas". Nova Gas. Retrieved 2016-02-23.