Decimal degrees

Last updated

Decimal degrees (DD) is a notation for expressing latitude and longitude geographic coordinates as decimal fractions of a degree. DD are used in many geographic information systems (GIS), web mapping applications such as OpenStreetMap, and GPS devices. Decimal degrees are an alternative to using sexagesimal degrees (degrees, minutes, and seconds - DMS notation). As with latitude and longitude, the values are bounded by ±90° and ±180° respectively.

Contents

Positive latitudes are north of the equator, negative latitudes are south of the equator. Positive longitudes are east of the Prime Meridian; negative longitudes are west of the Prime Meridian. Latitude and longitude are usually expressed in that sequence, latitude before longitude. The abbreviation dLL has been used in the scientific literature with locations in texts being identified as a tuple within square brackets, for example [54.579806, 3.582]. The appropriate decimal places are used, [1] negative values are given as hyphen-minus, Unicode 002D.

Precision

The radius of the semi-major axis of the Earth at the equator is 6,378,137.0 metres (20,925,646.3 ft) resulting in a circumference of 40,075,016.7 metres (131,479,714 ft). [2] The equator is divided into 360 degrees of longitude, so each degree at the equator represents 111,319.5 metres (365,221 ft). As one moves away from the equator towards a pole, however, one degree of longitude is multiplied by the cosine of the latitude, decreasing the distance, approaching zero at the pole. The number of decimal places required for a particular precision at the equator is:

Degree precision versus length
decimal
places
decimal
degrees
DMSObject that can be unambiguously recognized at this scaleN/S or E/W
at equator
E/W at
23N/S
E/W at
45N/S
E/W at
67N/S
01.01° 00′ 0″country or large region111 km102 km78.7 km43.5 km
10.10° 06′ 0″large city or district11.1 km10.2 km7.87 km4.35 km
20.010° 00′ 36″town or village1.11 km1.02 km0.787 km0.435 km
30.0010° 00′ 3.6″neighborhood, street111 m102 m78.7 m43.5 m
40.00010° 00′ 0.36″individual street, large buildings11.1 m10.2 m7.87 m4.35 m
50.000010° 00′ 0.036″individual trees, houses1.11 m1.02 m0.787 m0.435 m
60.0000010° 00′ 0.0036″individual humans111 mm102 mm78.7 mm43.5 mm
70.00000010° 00′ 0.00036″practical limit of commercial surveying11.1 mm10.2 mm7.87 mm4.35 mm
80.000000010° 00′ 0.000036″specialized surveying1.11 mm1.02 mm0.787 mm0.435 mm

A value in decimal degrees to a precision of 4 decimal places is precise to 11.1 metres (36 ft) at the equator. A value in decimal degrees to 5 decimal places is precise to 1.11 metres (3 ft 8 in) at the equator. Elevation also introduces a small error: at 6,378 metres (20,925 ft) elevation, the radius and surface distance is increased by 0.001 or 0.1%. Because the earth is not flat, the precision of the longitude part of the coordinates increases the further from the equator you get. The precision of the latitude part does not increase so much, more strictly however, a meridian arc length per 1 second depends on the latitude at the point in question. The discrepancy of 1 second meridian arc length between equator and pole is about 0.3 metres (1 ft 0 in) because the earth is an oblate spheroid.

Example

A DMS value is converted to decimal degrees using the formula:

For instance, the decimal degree representation for

38° 53′ 23″ N, 77° 00′ 32″ W

(the location of the United States Capitol) is

38.8897°, -77.0089°

In most systems, such as OpenStreetMap, the degree symbols are omitted, reducing the representation to

38.8897,-77.0089

To calculate the D, M and S components, the following formulas can be used:

where is the absolute value of and is the truncation function. Note that with this formula only can be negative and only may have a fractional value.

See also

Related Research Articles

<span class="mw-page-title-main">Minute and second of arc</span> Units for measuring angles

A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to 1/60 of one degree. Since one degree is 1/360 of a turn, or complete rotation, one arcminute is 1/21600 of a turn. The nautical mile (nmi) was originally defined as the arc length of a minute of latitude on a spherical Earth, so the actual Earth circumference is very near 21600 nmi. A minute of arc is π/10800 of a radian.

Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">Longitude</span> Geographic coordinate that specifies the east-west position of a point on the Earths surface

Longitude is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Meridians are imaginary semicircular lines running from pole to pole that connect points with the same longitude. The prime meridian defines 0° longitude; by convention the International Reference Meridian for the Earth passes near the Royal Observatory in Greenwich, south-east London on the island of Great Britain. Positive longitudes are east of the prime meridian, and negative ones are west.

A nautical mile is a unit of length used in air, marine, and space navigation, and for the definition of territorial waters. Historically, it was defined as the meridian arc length corresponding to one minute of latitude at the equator, such that Earth's polar circumference is very near to 21,600 nautical miles. Today the international nautical mile is defined as 1,852 metres. The derived unit of speed is the knot, one nautical mile per hour.

<span class="mw-page-title-main">Parsec</span> Unit of length used in astronomy

The parsec is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to 3.26 light-years or 206,265 astronomical units (AU), i.e. 30.9 trillion kilometres. The parsec unit is obtained by the use of parallax and trigonometry, and is defined as the distance at which 1 AU subtends an angle of one arcsecond. The nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun: from that distance, the gap between the Earth and the Sun spans slightly less than 1/3600 of one degree of view. Most stars visible to the naked eye are within a few hundred parsecs of the Sun, with the most distant at a few thousand parsecs, and the Andromeda Galaxy at over 700,000 parsecs.

<span class="mw-page-title-main">Geographic coordinate system</span> System to specify locations on Earth

The geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on the Earth as latitude and longitude. It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system, the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface.

<span class="mw-page-title-main">Tropic of Cancer</span> Line of northernmost latitude at which the Sun can be directly overhead

The Tropic of Cancer, also known as the Northern Tropic, is the most northerly circle of latitude on Earth at which the Sun can be directly overhead. This occurs on the June solstice, when the Northern Hemisphere is tilted toward the Sun to its maximum extent. It also reaches 90 degrees below the horizon at solar midnight on the December Solstice. Using a continuously updated formula, the circle is currently 23°26′10.1″ (or 23.43615°) north of the Equator.

<span class="mw-page-title-main">Circle of latitude</span> Geographic notion

A circle of latitude or line of latitude on Earth is an abstract east–west small circle connecting all locations around Earth at a given latitude coordinate line.

In mathematics and computer science, truncation is limiting the number of digits right of the decimal point.

<span class="mw-page-title-main">ISO 6709</span> International standard for representation of geographic location

ISO 6709, Standard representation of geographic point location by coordinates, is the international standard for representation of latitude, longitude and altitude for geographic point locations.

<span class="mw-page-title-main">Subsolar point</span> Point which the sun is directly overhead

The subsolar point on a planet is the point at which its Sun is perceived to be directly overhead ; that is, where the Sun's rays strike the planet exactly perpendicular to its surface. It can also mean the point closest to the Sun on an astronomical object, even though the Sun might not be visible.

<span class="mw-page-title-main">Universal Transverse Mercator coordinate system</span> Map projection system

The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system.

<span class="mw-page-title-main">Gravity of Earth</span>

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

<span class="mw-page-title-main">Sunrise equation</span> Equation to derive time of sunset and sunrise

The sunrise equation or sunset equation can be used to derive the time of sunrise or sunset for any solar declination and latitude in terms of local solar time when sunrise and sunset actually occur.

<span class="mw-page-title-main">Geohash</span> Public domain geocoding invented in 2008

Geohash is a public domain geocode system invented in 2008 by Gustavo Niemeyer which encodes a geographic location into a short string of letters and digits. Similar ideas were introduced by G.M. Morton in 1966. It is a hierarchical spatial data structure which subdivides space into buckets of grid shape, which is one of the many applications of what is known as a Z-order curve, and generally space-filling curves.

In geodesy and navigation, a meridian arc is the curve between two points on the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length.

<span class="mw-page-title-main">Geographical distance</span> Distance measured along the surface of the Earth

Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length.

<span class="mw-page-title-main">Equator</span> Imaginary line halfway between Earths North and South poles

The equator is a circle of latitude that divides a spheroid, such as Earth, into the Northern and Southern hemispheres. On Earth, the Equator is an imaginary line located at 0 degrees latitude, about 40,075 km (24,901 mi) in circumference, halfway between the North and South poles. The term can also be used for any other celestial body that is roughly spherical.

The Bowring series of the transverse mercator published in 1989 by Bernard Russel Bowring gave formulas for the Transverse Mercator that are simpler to program but retain millimeter accuracy.

References

  1. W. B. Whalley, 2021.'Mapping small glaciers, rock glaciers and related features in an age of retreating glaciers: using decimal latitude-longitude locations and 'geomorphic information tensors,Geografia Fisica e Dinamica Quaternaria 2021:44 55-67,DOI 10.4461/ GFDQ.2021.44.4
  2. World Geodetic System (WGS-84). Available online from National Geospatial-Intelligence Agency.