Deinococcus aerius

Last updated

Deinococcus aerius is an anaerobic bacterium that can be found in the atmosphere above the island of Japan. [1] [2] [3] Living in such conditions makes these bacteria highly resistant to desiccation, UV-C, and gamma radiation. [3] Although previously unidentified as strain TR0125, this bacterium was determined to be Deinococcus aerius by 16S rRNA sequencing. [4]

Contents

Gram type, morphology

When grown on anaerobic enrichment agar, colonies of D. aerius were observed to be “circular, convex, shiny and orange”. [4] A gram stain revealed that these bacteria are gram-positive. [4] Scanning electron microscopy revealed that cells of this bacterium are circular in shape and approximately 1.0–1.5 micrometers in size. [4] Additionally, they were found to exist as “single cells, or in pairs, tetrads or clusters”. [4]

Metabolism

Several metabolism tests have shown that D. aerius is not involved in “nitrate reduction, urease, arginine hydrolase, and ornithine decarboxylase activities and was unable to use some carbon sources”. [3] However, subsequent studies have shown that these bacteria are able to grow using “arabinose, glucosamine, ornithine, glutamate, maltose, sucrose, proline, raffinose, cysteine, lysine and methionine” as carbon sources. [4]

Where it’s found

D. aerius has been previously isolated from the atmosphere above Japan at altitudes between 0.8 and 5.8 km. To do this, dust samples were collected “on membrane filters using an ASD1 air sampler”. [4] The samples were then incubated on anaerobic enrichment agar and strain TR0125 was identified as D. aerius. [4]

Media grown on

D. aerius has been cultured on mTGE agar which contains beef extract, tryptone, glucose and Difto Bacto agar. [4] A growth analysis revealed that this bacterium grows best at temperatures between 25-30 °Celsius and did not grow at 4, 10 or 47 °C. [4]

Ecology

Because so little is known about this organism, its interactions with members of its genus as well as other organisms is still unknown.

Divsersity

Using 16S rRNA sequencing, D. aerius was able to be placed on a phylogenetic tree to determine its relationships to other organisms in the genus. [4] Analysis of the genome revealed that D. aerius had 92.3% genomic similarity to D. geothermalis and 95.7% genomic similarity to D. apachensi . [4]

Genome

Whole-genome sequencing was used to determine features of the D. aerius genome. [3] It was found that the genome had a total length of 4,524,446 base pairs. [3] Included in this, were 4,446 protein-coding sequences, 52 tRNA operons and 1 rRNA operon”. [3] It has been observed that D. aerius does not grow as well as other Deinococcus species, which may be due in part to its single rRNA operon. [3] Having only one rRNA operon would decrease the rate of protein synthesis in these bacteria, thus decreasing the rate for possible growth. [3]

Related Research Articles

Paracoccus denitrificans, is a coccoid bacterium known for its nitrate reducing properties, its ability to replicate under conditions of hypergravity and for being a relative of the eukaryotic mitochondrion.

<i>Pseudomonas stutzeri</i>

Pseudomonas stutzeri is a Gram-negative soil bacterium that is motile, has a single polar flagellum, and is classified as bacillus, or rod-shaped. While this bacterium was first isolated from human spinal fluid, it has since been found in many different environments due to its various characteristics and metabolic capabilities. P. stutzeri is an opportunistic pathogen in clinical settings, although infections are rare. Based on 16S rRNA analysis, this bacterium has been placed in the P. stutzeri group, to which it lends its name.

<i>Deinococcus</i>

Deinococcus is one genus of three in the order Deinococcales of the bacterial phylum Deinococcus-Thermus highly resistant to environmental hazards. These bacteria have thick cell walls that give them Gram-positive stains, but they include a second membrane and so are closer in structure to Gram-negative bacteria. Deinococcus survive when their DNA is exposed to high doses of gamma and UV radiation. Whereas other bacteria change their structure in the presence of radiation, such as by forming endospores, Deinococcus tolerate it without changing their cellular form and do not retreat into a hardened structure. They are also characterized by the presence of the carotenoid pigment deinoxanthin that give them their pink color. They are usually isolated according to these two criteria. In August 2020, scientists reported that bacteria from Earth, particularly Deinococcus bacteria, were found to survive for three years in outer space, based on studies conducted on the International Space Station. These findings support the notion of panspermia, the hypothesis that life exists throughout the Universe, distributed in various ways, including space dust, meteoroids, asteroids, comets, planetoids or contaminated spacecraft.

Hydrogenobacter thermophilus is an extremely thermophilic, straight rod (bacillus) bacterium. TK-6 is the type strain for this species. It is a Gram negative, non-motile, obligate chemolithoautotroph. It belongs to one of the earliest branching order of Bacteria. H. thermophilus TK-6 lives in soil that contains hot water. It was one of the first hydrogen oxidizing bacteria described leading to the discovery, and subsequent examination of many unique proteins involved in its metabolism. Its discovery contradicted the idea that no obligate hydrogen oxidizing bacteria existed, leading to a new understanding of this physiological group. Additionally, H. thermophilus contains a fatty acid composition that had not been observed before.

Deinococcus ficus strain CC-FR2-10T is a recently discovered gram-positive bacteria which plays a role in the production of nitrogen fertilizer. It was originally isolated from a Ficus plant, hence its name.

Legionella cherrii is an aerobic, flagellated, Gram-negative bacterium from the genus Legionella. It was isolated from a heated water sample in Minnesota. L. cherrii is similar to another Legionella species, L. pneumophila, and is believed to cause major respiratory problems.

Rhodoferax is a genus of Betaproteobacteria belonging to the purple nonsulfur bacteriarophic. Originally, Rhodoferax species were included in the genus Rhodocyclus as the Rhodocyclus gelatinous-like group. The genus Rhodoferax was first proposed in 1991 to accommodate the taxonomic and phylogenetic discrepancies arising from its inclusion in the genus Rhodocyclus. Rhodoferax currently comprises four described species: R. fermentans, R. antarcticus, R. ferrireducens, and R. saidenbachensis. R. ferrireducens, lacks the typical phototrophic character common to two other Rhodoferax species. This difference has led researchers to propose the creation of a new genus, Albidoferax, to accommodate this divergent species. The genus name was later corrected to Albidiferax. Based on geno- and phenotypical characteristics, A. ferrireducens was reclassified in the genus Rhodoferax in 2014. R. saidenbachensis, a second non-phototrophic species of the genus Rhodoferax was described by Kaden et al. in 2014.

Deinococcus frigens is a species of low temperature and drought-tolerating, UV-resistant bacteria from Antarctica. It is Gram-positive, non-motile and coccoid-shaped. Its type strain is AA-692. Individual Deinococcus frigens range in size from 0.9-2.0 μm and colonies appear orange or pink in color. Liquid-grown cells viewed using phase-contrast light microscopy and transmission electron microscopy on agar-coated slides show that isolated D. frigens appear to produce buds. Comparison of the genomes of Deiococcus radiodurans and D. frigens have predicted that no flagellar assembly exists in D. frigens.

Deinococcus marmoris is a Gram-positive bacterium isolated from Antarctica. As a species of the genus Deinococcus, the bacterium is UV-tolerant and able to withstand low temperatures.

Victivallis vadensis is a Gram-negative, coccus-shaped, bacteria found in the human digestive tract. It measures approximately 0.5-1.3 micrometers in diameter, is non-motile and chemoorganotrophic, and does not form spores. Victivallis vadensis is strictly anaerobic, as are 90 percent of the bacteria in the human gastrointestinal system.

Cryptobacterium curtum is a Gram-positive anaerobic rod bacteria isolated from human mouths.

Mycoplasma orale is a small bacterium found in the class Mollicutes. It belongs to the genus Mycoplasma, a well-known group of obligate intracellular parasites that inhabit humans. It also is known to be an opportunistic pathogen in immunocompromised humans. As with other Mycoplasma species, M. orale is not readily treated with many antibiotics due to its lack of a peptidoglycan cell wall. Therefore, this species is relevant to the medical field as physicians face the task of treating patients suffering from infections with this microbe. It is characterized by a small physical size, a small genome size, and a limited metabolism. It is also known to frequently contaminate laboratory experiments. This bacteria is very similar physiologically and morphologically to its sister species within the genus Mycoplasma; however, its recent discovery leaves many questions still unanswered about this microbe.

Tanpopo (mission) ISS astrobiology experiment investigating the potential interplanetary transfer of life, organic compounds, and possible terrestrial particles in the low Earth orbit

The Tanpopo mission is an orbital astrobiology experiment investigating the potential interplanetary transfer of life, organic compounds, and possible terrestrial particles in the low Earth orbit. The purpose is to assess the panspermia hypothesis and the possibility of natural interplanetary transport of microbial life as well as prebiotic organic compounds.

Deinococcus deserti is a Gram-negative, rod-shaped bacterium that belongs to the Deinococcaceae, a group of extremely radiotolerant bacteria. D. deserti and other Deinococcaceae exhibit an extraordinary ability to withstand ionizing radiation.

In microbiology, the term isolation refers to the separation of a strain from a natural, mixed population of living microbes, as present in the environment, for example in water or soil flora, or from living beings with skin flora, oral flora or gut flora, in order to identify the microbe(s) of interest. Historically, the laboratory techniques of isolation first developed in the field of bacteriology and parasitology, before those in virology during the 20th century. Methods of microbial isolation have drastically changed over the past 50 years, from a labor perspective with increasing mechanization, and in regard to the technology involved, and hence speed and accuracy.

Diagnostic microbiology is the study of microbial identification. Since the discovery of the germ theory of disease, scientists have been finding ways to harvest specific organisms. Using methods such as differential media or genome sequencing, physicians and scientists can observe novel functions in organisms for more effective and accurate diagnosis of organisms. Methods used in diagnostic microbiology are often used to take advantage of a particular difference in organisms and attain information about what species it can be identified as, which is often through a reference of previous studies. New studies provide information that others can reference so that scientists can attain a basic understanding of the organism they are examining.

Propionispira raffinosivorans is a motile, obligate anaerobic, gram-negative bacteria. It was originally isolated from spoiled beer and believed to have some causative effect in beer spoilage. Since then, it has been taxonomically reclassified and proven to play a role in anaerobic beer spoilage, because of its production of acids, such as acetic and propionic acid, during fermentation

Endozoicomonas gorgoniicola is a Gram-negative and facultative anaerobic bacterium from the genus of Endozoicomonas. Individual cells are motile and rod-shaped. Bacteria in this genus are symbionts of coral. E. gorgoniicola live specifically with soft coral and were originally isolated from a species of Plexaura, an octocoral, off the coast of Bimini in the Bahamas. The presence of this bacterium in a coral microbiome is associated with coral health.

Akkermansia glycanphila is a species of intestinal mucin-degrading bacterium. It was first isolated from reticulated python feces in 2016.

Thermodesulfobacterium hveragerdense is a bacterial species belonging to genus Thermodesulfobacterium, which are thermophilic sulfate-reducing bacteria. This species is found in aquatic areas of high temperature, and lives in freshwater like most, but not all Thermodesulfobacterium species It was first isolated from hotsprings in Iceland.

References

  1. Yang, Yinjie; Itoh, Takashi; Yokobori, Shin-ichi; Itahashi, Shiho; Shimada, Haruo; Satoh, Katsuya; Ohba, Hirofumi; Narumi, Issay; Yamagishi, Akihiko (August 2009). "Deinococcus aerius sp. nov., isolated from the high atmosphere". International Journal of Systematic and Evolutionary Microbiology. 59 (8): 1862–1866. doi: 10.1099/ijs.0.007963-0 . PMID   19567578.
  2. "Deinococcus aerius". www.uniprot.org. UniProt . Retrieved 2019-05-02.
  3. 1 2 3 4 5 6 7 8 Satoh, Katsuya, et al. “Draft Genome Sequence of the Radioresistant Bacterium Deinococcus Aerius TR0125, Isolated from the High Atmosphere above Japan.” Genome Announcements, vol. 6, no. 9, 1 Feb. 2018, doi:10.1128/genomea.00080-18.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 Yang, Y.; Itoh, T.; Yokobori, S.-i.; Itahashi, S.; Shimada, H.; Satoh, K.; Ohba, H.; Narumi, I.; Yamagishi, A. (30 June 2009). "Deinococcus aerius sp. nov., isolated from the high atmosphere". International Journal of Systematic and Evolutionary Microbiology. 59 (8): 1862–1866. doi: 10.1099/ijs.0.007963-0 . PMID   19567578.