Density altitude

Last updated
Density Altitude Computation Chart Density Altitude.png
Density Altitude Computation Chart

The density altitude is the altitude relative to standard atmospheric conditions at which the air density would be equal to the indicated air density at the place of observation. In other words, the density altitude is the air density given as a height above mean sea level. The density altitude can also be considered to be the pressure altitude adjusted for a non-standard temperature.

Contents

Both an increase in the temperature and a decrease in the atmospheric pressure, and, to a much lesser degree, an increase in the humidity, will cause an increase in the density altitude. In hot and humid conditions, the density altitude at a particular location may be significantly higher than the true altitude.

In aviation, the density altitude is used to assess an aircraft's aerodynamic performance under certain weather conditions. The lift generated by the aircraft's airfoils, and the relation between its indicated airspeed (IAS) and its true airspeed (TAS), are also subject to air-density changes. Furthermore, the power delivered by the aircraft's engine is affected by the density and composition of the atmosphere.

Aircraft safety

Air density is perhaps the single most important factor affecting aircraft performance. It has a direct bearing on: [2]

Aircraft taking off from a “hot and high” airport, such as the Quito Airport or Mexico City, are at a significant aerodynamic disadvantage. The following effects result from a density altitude that is higher than the actual physical altitude: [2]

Due to these performance issues, an aircraft's takeoff weight may need to be lowered, or takeoffs may need to be scheduled for cooler times of the day. The wind direction and the runway slope may need to be taken into account.

Skydiving

The density altitude is an important factor in skydiving, and one that can be difficult to judge properly, even for experienced skydivers. [3] In addition to the general change in wing efficiency that is common to all aviation, skydiving has additional considerations. There is an increased risk due to the high mobility of jumpers (who will often travel to a drop zone with a completely different density altitude than they are used to, without being made consciously aware of it by the routine of calibrating to QNH/QFE). [4] Another factor is the higher susceptibility to hypoxia at high density altitudes, which, combined especially with the unexpected higher free-fall rate, can create dangerous situations and accidents. [3] Parachutes at higher altitudes fly more aggressively, making their effective area smaller, which is more demanding for a pilot's skill and can be especially dangerous for high-performance landings, which require accurate estimates and have a low margin of error before they become dangerous. [4]

Calculation

The density altitude can be calculated from the atmospheric pressure and the outside air temperature (assuming dry air) using the following formula:

In this formula,

, density altitude in meters (m);
, (static) atmospheric pressure;
, standard sea-level atmospheric pressure, International Standard Atmosphere (ISA): 1013.25 hectopascals (hPa), or U.S. Standard Atmosphere: 29.92 inches of mercury (inHg);
, outside air temperature in kelvins (K);
= 288.15 K, ISA sea-level air temperature;
= 0.0065 K/m, ISA temperature lapse rate (below 11 km);
≈ 8.3144598 J/mol·K, ideal gas constant;
≈ 9.80665 m/s2, gravitational acceleration;
≈ 0.028964 kg/mol, molar mass of dry air.

The National Weather Service (NWS) formula

The National Weather Service uses the following dry-air approximation to the formula for the density altitude above in its standard:

In this formula,

, National Weather Service density altitude in feet ();
, station pressure (static atmospheric pressure) in inches of mercury (inHg);
, station temperature (outside air temperature) in degrees Fahrenheit (°F).

Note that the NWS standard specifies that the density altitude should be rounded to the nearest 100 ft.

Approximation formula for calculating the density altitude from the pressure altitude

This is an easier formula to calculate (with great approximation) the density altitude from the pressure altitude and the ISA temperature deviation:[ citation needed ]

In this formula,

, pressure altitude in feet (ft) ;
, atmospheric pressure in millibars (mb) adjusted to mean sea level;
, outside air temperature in degrees Celsius (°C);
, assuming that the outside air temperature falls at the rate of 1.98 °C per 1,000 ft of altitude until the tropopause (at 36,000 ft) is reached.

Rounding up 1.98 °C to 2 °C, this approximation simplifies to become

See also

Notes

  1. "AC 00-45H - Aviation Weather Services – Document Information". Archived from the original on 2016-12-23.
  2. 1 2 AOPA Flight Training, Volume 19, Number 4; April 2007; Aircraft Owners and Pilots Association; ISSN   1047-6415
  3. 1 2 Farnsworth, Musika. "Tragedy in Antarctica". Parachutist Online. Archived from the original on 15 January 2015. Retrieved 14 January 2015.
  4. 1 2 Walker-Radtke, Megan. "High and Fast: Understanding Density Altitude". Parachutist Online. Archived from the original on 15 January 2015. Retrieved 14 January 2015.

Related Research Articles

<span class="mw-page-title-main">Mach number</span> Ratio of speed of an object moving through fluid and local speed of sound

The Mach number, often only Mach, is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound. It is named after the Czech physicist and philosopher Ernst Mach.

<span class="mw-page-title-main">Vapor pressure</span> Pressure exerted by a vapor in thermodynamic equilibrium

Vapor pressure or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's thermodynamic tendency to evaporate. It relates to the balance of particles escaping from the liquid in equilibrium with those in a coexisting vapor phase. A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the attractive interactions between liquid molecules become less significant in comparison to the entropy of those molecules in the gas phase, increasing the vapor pressure. Thus, liquids with strong intermolecular interactions are likely to have smaller vapor pressures, with the reverse true for weaker interactions.

<span class="mw-page-title-main">Troposphere</span> Lowest layer of Earths atmosphere

The troposphere is the lowest layer of the atmosphere of Earth. It contains 80% of the total mass of the planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of the troposphere is 18 km in the tropics; 17 km in the middle latitudes; and 6 km in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km.

Atmospheric pressure, also known as air pressure or barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars, 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

<span class="mw-page-title-main">Horizon</span> Apparent curve that separates earth from sky

The horizon is the apparent curve that separates the surface of a celestial body from its sky when viewed from the perspective of an observer on or near the surface of the relevant body. This curve divides all viewing directions based on whether it intersects the relevant body's surface or not.

<span class="mw-page-title-main">Lapse rate</span> Vertical rate of change of temperature in atmosphere

The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, falls with altitude. Lapse rate arises from the word lapse, in the sense of a gradual fall. In dry air, the adiabatic lapse rate is 9.8 °C/km. The saturated adiabatic lapse rate (SALR), or moist adiabatic lapse rate (MALR), is the decrease in temperature of a parcel of water-saturated air that rises in the atmosphere. It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km, as obtained from the International Civil Aviation Organization (ICAO). The environmental lapse rate is the decrease in temperature of air with altitude for a specific time and place. It can be highly variable between circumstances.

In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century. In simple words, we can say that the partial pressure of a gas in vapour phase is directly proportional to the mole fraction of a gas in solution.

Equivalent potential temperature, commonly referred to as theta-e, is a quantity that is conserved during changes to an air parcel's pressure, even if water vapor condenses during that pressure change. It is therefore more conserved than the ordinary potential temperature, which remains constant only for unsaturated vertical motions.

Given an atmospheric pressure measurement, the pressure altitude is the imputed altitude that the International Standard Atmosphere (ISA) model predicts to have the same pressure as the observed value.

The density of air or atmospheric density, denoted ρ, is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity. At 101.325 kPa (abs) and 20 °C, air has a density of approximately 1.204 kg/m3 (0.0752 lb/cu ft), according to the International Standard Atmosphere (ISA). At 101.325 kPa (abs) and 15 °C (59 °F), air has a density of approximately 1.225 kg/m3 (0.0765 lb/cu ft), which is about 1800 that of water, according to the International Standard Atmosphere (ISA). Pure liquid water is 1,000 kg/m3 (62 lb/cu ft).

<span class="mw-page-title-main">True airspeed</span> Speed of an aircraft relative to the air mass through which it is flying

The true airspeed of an aircraft is the speed of the aircraft relative to the air mass through which it is flying. The true airspeed is important information for accurate navigation of an aircraft. Traditionally it is measured using an analogue TAS indicator, but as the Global Positioning System has become available for civilian use, the importance of such air-measuring instruments has decreased. Since indicated, as opposed to true, airspeed is a better indicator of margin above the stall, true airspeed is not used for controlling the aircraft; for these purposes the indicated airspeed – IAS or KIAS – is used. However, since indicated airspeed only shows true speed through the air at standard sea level pressure and temperature, a TAS meter is necessary for navigation purposes at cruising altitude in less dense air. The IAS meter reads very nearly the TAS at lower altitude and at lower speed. On jet airliners the TAS meter is usually hidden at speeds below 200 knots (370 km/h). Neither provides for accurate speed over the ground, since surface winds or winds aloft are not taken into account.

<span class="mw-page-title-main">Indicated airspeed</span> Displayed on the airspeed indicator on an aircraft

Indicated airspeed (IAS) is the airspeed of an aircraft as measured by its pitot-static system and displayed by the airspeed indicator (ASI). This is the pilots' primary airspeed reference.

<span class="mw-page-title-main">International Standard Atmosphere</span> Atmospheric model

The International Standard Atmosphere (ISA) is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. It has been established to provide a common reference for temperature and pressure and consists of tables of values at various altitudes, plus some formulas by which those values were derived. The International Organization for Standardization (ISO) publishes the ISA as an international standard, ISO 2533:1975. Other standards organizations, such as the International Civil Aviation Organization (ICAO) and the United States Government, publish extensions or subsets of the same atmospheric model under their own standards-making authority.

In astronomy, air mass or airmass is a measure of the amount of air along the line of sight when observing a star or other celestial source from below Earth's atmosphere. It is formulated as the integral of air density along the light ray.

The barometric formula is a formula used to model how the pressure of the air changes with altitude.

In aviation, calibrated airspeed (CAS) is indicated airspeed corrected for instrument and position error.

<span class="mw-page-title-main">Wingtip vortices</span> Turbulence caused by difference in air pressure on either side of wing

Wingtip vortices are circular patterns of rotating air left behind a wing as it generates lift. The name is a misnomer because the cores of the vortices are slightly inboard of the wing tips. Wingtip vortices are sometimes named trailing or lift-induced vortices because they also occur at points other than at the wing tips. Indeed, vorticity is trailed at any point on the wing where the lift varies span-wise ; it eventually rolls up into large vortices near the wingtip, at the edge of flap devices, or at other abrupt changes in wing planform.

<span class="mw-page-title-main">Scale height</span> Distance over which a quantity decreases by a factor of e

In atmospheric, earth, and planetary sciences, a scale height, usually denoted by the capital letter H, is a distance over which a physical quantity decreases by a factor of e.

<span class="mw-page-title-main">U.S. Standard Atmosphere</span> Static atmospheric model

The U.S. Standard Atmosphere is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. The model, based on an existing international standard, was first published in 1958 by the U.S. Committee on Extension to the Standard Atmosphere, and was updated in 1962, 1966, and 1976. It is largely consistent in methodology with the International Standard Atmosphere, differing mainly in the assumed temperature distribution at higher altitudes.

Altimeter setting is the value of the atmospheric pressure used to adjust the scale of a pressure altimeter so that it indicates the height of an aircraft above a known reference surface. This reference can be the mean sea level pressure (QNH), the pressure at a nearby surface airport (QFE), or the "standard pressure level" of 1,013.25 hectopascals which gives pressure altitude and is used to maintain one of the standard flight levels.

References