Hot and high

Last updated
Hot and high takeoff.png

In aviation, hot and high is a condition of low air density due to high ambient temperature and high airport elevation. Air density decreases with increasing temperature and altitude. The lower air density reduces the power output from the aircraft's engine and also requires a higher true airspeed before the aircraft can become airborne. Aviators gauge air density by calculating the density altitude. [1]

Contents

An airport may be especially hot or high, without the other condition being present. Temperature and pressure altitude can change from one hour to the next. The fact that temperature decreases as altitude increases mitigates the "hot and high" effect to a small extent.

Negative effects of reduced engine power due to hot and high conditions

Improving hot and high performance

Some ways to increase aircraft performance in hot and high conditions include:

Jet or rocket assisted take off

Auxiliary rockets and/or jet engines can help a fully loaded aircraft to take off within the length of the runway. The rockets are usually one-time units that are jettisoned after takeoff. This practice was common in the 1950s and 60s, when the lower levels of thrust from military turbojets was inadequate for takeoff from shorter runways or with very heavy payloads. It is now seldom used.

Auxiliary jets and rockets have rarely been used on civil aircraft due to the risk of aircraft damage and loss of control if something were to go wrong during their use. Boeing did, however, produce a version of its popular Boeing 727 with JATO primarily for "hot and high" operations out of Mexico City Airport (MMMX) and La Paz, Bolivia. The boosters were located adjacent to the main landing gear at the wing root on each side of the aircraft and only intended to operate as an emergency fallback in the case of an engine failure during takeoff. [2]

Specialized aircraft

Several manufacturers of early jet airliners offered variants optimized for hot and high operations. Such aircraft generally offered the largest wings and/or the most powerful engines in the model lineup coupled with a small fuselage to reduce weight. Some such aircraft include:

The marketing failure of most of these airplanes demonstrated that airlines were generally unwilling to accept reduced efficiency at cruise and smaller ultimate load-carrying capacity in return for a slight performance gain at particular airports. Rather than accepting these drawbacks, it was easier for airlines to demand the construction of longer runways, operate with smaller loads as conditions dictated, or simply drop the unprofitable destinations.

Furthermore, as the second generation of jet airliners began to appear in the 1970s, some aircraft were designed to eliminate the need for a special "hot and high" variant – for instance, the Airbus A300 can perform a 15/0 takeoff, where the leading edge slats are adjusted to 15 degrees and the flaps kept retracted. This takeoff technique is only used at hot and high airports, for it enables a higher climb limit weight and improves second segment climb performance.

Most jetliner manufacturers have dropped the "hot and high" variants from their model lineups.

Hot and high airports

Notable examples of hot and high airports include:[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Boeing 707</span> Narrow-body jet airliner family

The Boeing 707 is an early American long-range narrow-body airliner, the first jetliner developed and produced by Boeing Commercial Airplanes. Developed from the Boeing 367-80 prototype first flown in 1954, the initial 707-120 first flew on December 20, 1957. Pan Am began regular 707 service on October 26, 1958. With versions produced until 1979, the 707 was a swept wing quadjet with podded engines. Its larger fuselage cross-section allowed six-abreast economy seating, retained in the later 720, 727, 737, and 757 models.

<span class="mw-page-title-main">Douglas DC-8</span> Jet airliner family

The Douglas DC-8 is an early long-range narrow-body jetliner designed and produced by the American Douglas Aircraft Company. Work began in 1952 towards the United States Air Force's (USAF) requirement for a jet-powered aerial refueling tanker. After losing the USAF's tanker competition to the rival Boeing KC-135 Stratotanker in May 1954, Douglas announced in June 1955 its derived jetliner project marketed to civil operators. In October 1955, Pan Am made the first order along with the competing Boeing 707, and many other airlines soon followed. The first DC-8 was rolled out in Long Beach Airport on April 9, 1958, and flew for the first time on May 30. Following Federal Aviation Administration (FAA) certification in August 1959, the DC-8 entered service with Delta Air Lines on September 18.

<span class="mw-page-title-main">Convair 880</span> American four-engine jet airliner (1960–1990s)

The Convair 880 is a retired American narrow-body jet airliner produced by the Convair division of General Dynamics. It was designed to compete with the Boeing 707 and Douglas DC-8 by being smaller but faster, a niche that failed to create demand. When it was first introduced, some in aviation circles claimed that at 615 mph (990 km/h), it was the fastest jet transport in the world. Only 65 Convair 880s were produced over the lifetime of the production run from 1959 to 1962, and General Dynamics eventually withdrew from the airliner market after considering the 880 project a failure. The Convair 990 Coronado was a stretched and faster variant of the 880.

<span class="mw-page-title-main">Supersonic transport</span> Airliner faster than the speed of sound

A supersonic transport (SST) or a supersonic airliner is a civilian supersonic aircraft designed to transport passengers at speeds greater than the speed of sound. To date, the only SSTs to see regular service have been Concorde and the Tupolev Tu-144. The last passenger flight of the Tu-144 was in June 1978 and it was last flown in 1999 by NASA. Concorde's last commercial flight was in October 2003, with a November 26, 2003 ferry flight being its last airborne operation. Following the permanent cessation of flying by Concorde, there are no remaining SSTs in commercial service. Several companies have each proposed a supersonic business jet, which may bring supersonic transport back again.

<span class="mw-page-title-main">Convair 990 Coronado</span> American four-engined jet airliner (1962–1987)

The Convair 990 Coronado is a retired American narrow-body four-engined jet airliner produced between 1961 and 1963 by the Convair division of American company General Dynamics. It was a stretched version of its earlier Convair 880 produced in response to a request from American Airlines: the 990 was lengthened by 10 ft (3.0 m), which increased the number of passengers from between 88 and 110 in the 880 to between 96 and 121. This was still fewer passengers than the contemporary Boeing 707 or Douglas DC-8, although the 990 was 25–35 mph (40–56 km/h) faster than either in cruise.

<span class="mw-page-title-main">Cruise (aeronautics)</span> Level flight after an aircraft climbs to a set altitude and before it begins to descend

Cruise is the phase of aircraft flight that starts when the aircraft levels off after a climb, until it begins to descend for landing. Cruising usually comprises the majority of a flight, and may include small changes in heading, airspeed, and altitude.

<span class="mw-page-title-main">Boeing Sonic Cruiser</span> Concept high-subsonic jet airliner with delta wing-canard configuration

The Boeing Sonic Cruiser was a concept jet airliner with a delta wing–canard configuration. It was distinguished from conventional airliners by its delta wing and high-subsonic cruising speed of up to Mach 0.98. Boeing first proposed it in 2001, but airlines generally preferred lower operating costs over higher speed. Boeing ended the Sonic Cruiser project in December 2002 and shifted to the slower but more fuel-efficient 7E7 airliner.

<span class="mw-page-title-main">Maximum takeoff weight</span> Maximum weight of a craft at which takeoff is permitted

The maximum takeoff weight (MTOW) or maximum gross takeoff weight (MGTOW) or maximum takeoff mass (MTOM) of an aircraft is the maximum weight at which the pilot is allowed to attempt to take off, due to structural or other limits. The analogous term for rockets is gross lift-off mass, or GLOW. MTOW is usually specified in units of kilograms or pounds.

<span class="mw-page-title-main">Density altitude</span> Altitude relative to standard atmospheric conditions

The density altitude is the altitude relative to standard atmospheric conditions at which the air density would be equal to the indicated air density at the place of observation. In other words, the density altitude is the air density given as a height above mean sea level. The density altitude can also be considered to be the pressure altitude adjusted for a non-standard temperature.

de Havilland Canada Dash 7 1975 airliner family by de Havilland Canada

The de Havilland Canada DHC-7, popularly known as the Dash 7, is a turboprop-powered regional airliner with short take-off and landing (STOL) performance. Variants were built with 50–54 seats. It first flew in 1975 and remained in production until 1988 when the parent company, de Havilland Canada, was purchased by Boeing in 1986 and later sold to Bombardier. In 2006 Bombardier sold the type certificate for the aircraft design to Victoria-based manufacturer Viking Air.

<span class="mw-page-title-main">Compressor stall</span> Gas turbine phenomenon

A compressor stall is a local disruption of the airflow in the compressor of a gas turbine or turbocharger. A stall that results in the complete disruption of the airflow through the compressor is referred to as a compressor surge. The severity of the phenomenon ranges from a momentary power drop barely registered by the engine instruments to a complete loss of compression in case of a surge, requiring adjustments in the fuel flow to recover normal operation.

<span class="mw-page-title-main">Flight planning</span>

Flight planning is the process of producing a flight plan to describe a proposed aircraft flight. It involves two safety-critical aspects: fuel calculation, to ensure that the aircraft can safely reach the destination, and compliance with air traffic control requirements, to minimise the risk of midair collision. In addition, flight planners normally wish to minimise flight cost through the appropriate choice of route, height, and speed, and by loading the minimum necessary fuel on board. Air Traffic Services (ATS) use the completed flight plan for separation of aircraft in air traffic management services, including tracking and finding lost aircraft, during search and rescue (SAR) missions.

<span class="mw-page-title-main">Fuel dumping</span> Emergency procedure for aircraft to reduce weight

Fuel dumping is a procedure used by aircraft in certain emergency situations before a return to the airport shortly after takeoff, or before landing short of the intended destination to reduce the aircraft's weight.

<span class="mw-page-title-main">Qamdo Bamda Airport</span> Airport in Baxoi, Tibet, China

Changdu Bangda Airport, also known as Qamdo Bamda Airport, is an airport serving Qamdo (Changdu), Tibet Autonomous Region, China. It is located in the village of Bamda (Bangda).

<span class="mw-page-title-main">Pan Am Flight 816</span> 1973 aviation accident

Pan Am Flight 816 was an international flight from Auckland, New Zealand, to San Francisco, California, via Tahiti, French Polynesia, and Los Angeles, California. It was operated by a Pan Am Boeing 707-321B bearing the registration N417PA and named Clipper Winged Racer. On July 22, 1973, at 10:06 P.M. local time, the Boeing 707 took off from Faa'a International Airport in Papeete. Thirty seconds after takeoff, the airliner, carrying 79 passengers and crew, crashed into the sea. All occupants except 1 passenger were killed.

<span class="mw-page-title-main">Boeing 720</span> 1959 airliner series by Boeing

The Boeing 720 was an American narrow-body airliner produced by Boeing Commercial Airplanes. Announced in July 1957 as a 707 derivative for shorter flights from shorter runways, the 720 first flew on November 23, 1959. Its type certificate was issued on June 30, 1960, and it entered service with United Airlines on July 5, 1960. A total of 154 Boeing 720s and 720Bs were built until 1967. As a derivative, the 720 had low development costs, allowing profitability despite few sales.

<span class="mw-page-title-main">American Airlines Flight 514</span> 1959 aviation accident in New York

American Airlines Flight 514 was a training flight from Idlewild International Airport, to the Grumman Aircraft Corp. airfield. On the afternoon of August 15, 1959, the Boeing 707 operating the flight crashed near the Calverton airport, killing all five crew members aboard. This was the first accident to involve a Boeing 707, which had only gone into service in October of the previous year, and the first of three accidents involving American's 707s in the New York area within three years, followed by Flight 1502 and Flight 1.

<span class="mw-page-title-main">1972 Puerto Rico DC-7 crash</span> Aviation accident

The 1972 Puerto Rico DC-7 crash was an aviation accident that occurred on December 31, 1972, in Carolina, Puerto Rico. As a result of inadequate maintenance, the aircraft's No. 2 engine failed after takeoff. After initiating a turn to return to the airport, the aircraft eventually descended into, or attempted to ditch into, the ocean a mile offshore. All five people on board died, including baseball legend Roberto Clemente. The crash site was listed on the US National Register of Historic Places in 2022.

<span class="mw-page-title-main">Olympic Airways Flight 411</span> 1978 near plane crash in Athens, Greece

Olympic Airways Flight 411 was a flight from Ellinikon International Airport bound for John F. Kennedy International Airport and operated by Olympic Airways using a Boeing 747-200. On August 9, 1978, the flight came close to crashing in downtown Athens. Despite maneuvers near the edge of the flight envelope, none of the 418 passengers and crew suffered serious injury.

References

  1. https://www.faasafety.gov/files/gslac/library/documents/2011/Aug/56396/FAA%20P-8740-02%20DensityAltitude%5B%5D[hi-res]%20branded.pdf
  2. "The Boeing 727 JATO Option". www.tailsthroughtime.com. Archived from the original on 2016-12-01. Retrieved 2016-11-30.
  3. "Current Climate Condition in Leh Ladakh, India". www.lehladakhindia.com.
  4. Spelfogel, Michael (8 August 2016). "14 of the World's Most Extreme Airports". The Points Guy.{{cite web}}: Missing or empty |url= (help)
  5. "Leh weather averages". IMD. June 2011. Archived from the original on 21 July 2011. Retrieved 2 August 2010.
  6. "A380 arrives in Colombia ahead of hot and high tests".
  7. http://www.business-standard.com/article/economy-policy/in-siachen-dhruv-proves-a-world-beater-111030700066_1.html In Siachen, Dhruv proves a world-beater Ajai Shukla | Bangalore March 7, 2011 Last Updated at 00:48 IST
  8. "Airnews" (PDF). Air News. 2019-06-21. Retrieved 2019-06-21.