Dihydrokaempferol 4-reductase

Last updated
dihydrokaempferol 4-reductase
Identifiers
EC no. 1.1.1.219
CAS no. 98668-58-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a dihydrokaempferol 4-reductase (EC 1.1.1.219) is an enzyme that catalyzes the chemical reaction

Contents

cis-3,4-leucopelargonidin + NADP+ (+)-dihydrokaempferol + NADPH + H+

Thus, the two substrates of this enzyme are cis-3,4-leucopelargonidin and NADP+, whereas its 3 products are (+)-dihydrokaempferol, NADPH, and H+.

This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is cis-3,4-leucopelargonidin:NADP+ 4-oxidoreductase. Other names in common use include dihydroflavanol 4-reductase (DFR), dihydromyricetin reductase, NADPH-dihydromyricetin reductase, and dihydroquercetin reductase. This enzyme participates in flavonoid biosynthesis.

Function

Anthocyanidins, common plant pigments, are further reduced by the enzyme dihydroflavonol 4-reductase (DFR) to the corresponding colorless leucoanthocyanidins. [1]

DFR uses dihydromyricetin (ampelopsin) NADPH and 2 H+ to produce leucodelphinidin and NADP. [2] [3]

A cDNA for DFR has been cloned from the orchid Bromheadia finlaysoniana . [4]

Researchers in Japan have genetically manipulated roses by using RNA interference to knock out endogenous DFR, adding a gene DFR from an iris, and adding a gene for the blue pigment, delphinidin, in an effort to create a blue rose, which is being sold worldwide. [5] [6]

Dihydroflavonol 4-reductase is an enzyme part of the lignin biosynthesis pathway. In Arabidopsis thaliana , the enzyme uses sinapaldehyde or coniferyl aldehyde or coumaraldehyde and NADPH to produce sinapyl alcohol or coniferyl alcohol or coumaryl alcohol respectively and NADP+. [7]

Structural studies

As of late 2007, two structures have been solved for this class of enzymes, with PDB accession codes 2C29 and 2IOD.

Related Research Articles

<span class="mw-page-title-main">Catechin</span> Type of natural phenol as a plant secondary metabolite

Catechin is a flavan-3-ol, a type of secondary metabolite providing antioxidant roles in plants. It belongs to the subgroup of polyphenols called flavonoids.

<span class="mw-page-title-main">Cyanidin</span> Anthocyanidin pigment in flowering plant petals and fruits

Cyanidin is a natural organic compound. It is a particular type of anthocyanidin. It is a pigment found in many red berries including grapes, bilberry, blackberry, blueberry, cherry, chokeberry, cranberry, elderberry, hawthorn, loganberry, açai berry and raspberry. It can also be found in other fruits such as apples and plums, and in red cabbage and red onion. It has a characteristic reddish-purple color, though this can change with pH; solutions of the compound are red at pH < 3, violet at pH 7-8, and blue at pH > 11. In certain fruits, the highest concentrations of cyanidin are found in the seeds and skin. Cyanidin has been found to be a potent sirtuin 6 (SIRT6) activator.

In enzymology, a flavanone 4-reductase (EC 1.1.1.234) is an enzyme that catalyzes the chemical reaction

In enzymology, an anthocyanidin reductase (EC 1.3.1.77) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Divinyl chlorophyllide a 8-vinyl-reductase</span> Class of enzymes

In enzymology, divinyl chlorophyllide a 8-vinyl-reductase (EC 1.3.1.75) is an enzyme that catalyzes the chemical reaction

In enzymology, a leucocyanidin oxygenase (EC 1.14.11.19) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Aspartate-semialdehyde dehydrogenase</span> Amino-acid-synthesizing enzyme in fungi, plants and prokaryota

In enzymology, an aspartate-semialdehyde dehydrogenase is an enzyme that is very important in the biosynthesis of amino acids in prokaryotes, fungi, and some higher plants. It forms an early branch point in the metabolic pathway forming lysine, methionine, leucine and isoleucine from aspartate. This pathway also produces diaminopimelate which plays an essential role in bacterial cell wall formation. There is particular interest in ASADH as disabling this enzyme proves fatal to the organism giving rise to the possibility of a new class of antibiotics, fungicides, and herbicides aimed at inhibiting it.

In enzymology, a leucoanthocyanidin reductase (EC 1.17.1.3) (LAR, aka leucocyanidin reductase or LCR) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Flavonoid biosynthesis</span>

Flavonoids are synthesized by the phenylpropanoid metabolic pathway in which the amino acid phenylalanine is used to produce 4-coumaroyl-CoA. This can be combined with malonyl-CoA to yield the true backbone of flavonoids, a group of compounds called chalcones, which contain two phenyl rings. Conjugate ring-closure of chalcones results in the familiar form of flavonoids, the three-ringed structure of a flavone. The metabolic pathway continues through a series of enzymatic modifications to yield flavanones → dihydroflavonols → anthocyanins. Along this pathway, many products can be formed, including the flavonols, flavan-3-ols, proanthocyanidins (tannins) and a host of other various polyphenolics.

<span class="mw-page-title-main">Anthocyanin</span> Class of chemical compounds

Anthocyanins, also called anthocyans, are water-soluble vacuolar pigments that, depending on their pH, may appear red, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart gave the name Anthokyan to a chemical compound that gives flowers a blue color for the first time in his treatise "Die Farben der Blüthen". Food plants rich in anthocyanins include the blueberry, raspberry, black rice, and black soybean, among many others that are red, blue, purple, or black. Some of the colors of autumn leaves are derived from anthocyanins.

<span class="mw-page-title-main">Aromadendrin</span> Chemical compound

Aromadendrin is a flavanonol, a type of flavonoid. It can be found in the wood of Pinus sibirica.

<span class="mw-page-title-main">3-Deoxyanthocyanidin</span> Class of chemical compounds

The 3-Deoxyanthocyanidins and their glycosides are molecules with an anthocyanidins backbone lacking an hydroxyl group at position 3 on the C-ring. This nomenclature is the inverse of that which is commonly used in flavonoids, where the hydroxy-group is assumed absent if it is not specified, e. g. flavan-3-ol, flavan-4-ol, flavan-3,4-ol and flavonol.

<span class="mw-page-title-main">Leucoanthocyanidin</span> Chemical compound

Leucoanthocyanidin (flavan-3,4-diols) are colorless chemical compounds related to anthocyanidins and anthocyanins. Leucoanthocyanins can be found in Anadenanthera peregrina and in several species of Nepenthes including N. burbidgeae, N. muluensis, N. rajah, N. tentaculata, and N. × alisaputrana.

<span class="mw-page-title-main">Leucocyanidin</span> Chemical compound

Leucocyanidin is a colorless chemical compound that is a member of the class of natural products known as leucoanthocyanidins.

<span class="mw-page-title-main">Leucopelargonidin</span> Chemical compound

Leucopelargonidin is a colorless chemical compound related to leucoanthocyanins. It can be found in Albizia lebbeck, in the fruit of Anacardium occidentale (Cashew), in the fruit of Areca catechu, in the fruit of Hydnocarpus wightiana, in the rhizome of Rumex hymenosepalus, in Zea mays (Corn) and in Ziziphus jujuba.

<span class="mw-page-title-main">Leucodelphinidin</span> Chemical compound

Leucodelphinidin is a colorless chemical compound related to leucoanthocyanidins. It can be found in Acacia auriculiformis, in the bark of Karada and in the kino (gum) from Eucalyptus pilularis.

<span class="mw-page-title-main">Flavan-4-ol</span> Chemical compound

The flavan-4-ols (3-deoxyflavonoids) are flavone-derived alcohols and a family of flavonoids. Flavan-4-ols are colorless precursor compounds that polymerize to form red phlobaphene pigments. They can be found in the sorghum. Glycosides can be isolated from a methanol extract of the rhizomes of Abacopteris penangiana.

<span class="mw-page-title-main">Sinapaldehyde</span> Chemical compound

Sinapaldehyde is an organic compound with the formula HO(CH3O)2C6H2CH=CHCHO. It is a derivative of cinnamaldehyde, featuring one hydroxy group and two methoxy groups as substituents. It is an intermediate in the formation of sinapyl alcohol, a lignol that is a major precursor to lignin.

The biosynthesis of phenylpropanoids involves a number of enzymes.

<span class="mw-page-title-main">Basics of blue flower colouration</span>

Blue flower colour was always associated with something unusual and desired. Blue roses especially were assumed to be a dream that cannot be realised. Blue colour in flower petals is caused by anthocyanins, which are members of flavonoid class metabolites. We can diversify three main classes of anthocyanin pigments: cyaniding type responsible for red coloration, pelargonidin type responsible for orange colour and delphinidin type responsible for violet/blue flower and fruits coloration. The main difference in the structure of listed anthocyanins type is the number of hydroxyl groups in the B-ring of the anthocyanin. Nevertheless, in the monomeric state anthocyanins never show blue colour in the weak acidic and neutral pH. The mechanism of blue colour formation are very complicated in most cases, presence of delphinidin type pigments is not sufficient, great role play also the pH and the formation of complexes of anthocyanins with flavones and metal ions.

References

  1. Nakajima J, Tanaka Y, Yamazaki M, Saito K (July 2001). "Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis". J. Biol. Chem. 276 (28): 25797–803. doi: 10.1074/jbc.M100744200 . PMID   11316805.
  2. "Leucodelphinidin biosynthesis". MetaCyc. SRI International.
  3. Les cibles d’amélioration pour la qualité des raisins: L’exemple des flavonoïdes, Nancy Terrier (French) [ permanent dead link ]
  4. The isolation, molecular characterization and expression of dihydroflavonol 4-reductase cDNA in the orchid, Bromheadia finlaysoniana. Chye-Fong Liew, Chiang-Shiong Loh, Chong-Jin Goh and Saw-Hoon Lim, Plant Science, Volume 135, Issue 2, 10 July 1998, Pages 161–169, doi : 10.1016/S0168-9452(98)00071-5
  5. Katsumoto Y et al (2007) Engineering of the Rose Flavonoid Biosynthetic Pathway Successfully Generated Blue-Hued Flowers Accumulating Delphinidin Plant Cell Physiol. 48(11): 1589–1600
  6. Phys.Org website. April 4, 2005 Plant gene replacement results in the world's only blue rose
  7. "Dihydroflavonol 4-reductase". Arabidopsis Reactome. Archived from the original on 2016-01-30. Retrieved 2010-11-11.

Further reading