ELETTRA

Last updated

Elettra Sincrotrone Trieste is an international research center located in Basovizza on the outskirts of Trieste, Italy.

Elettra synchrotron under construction Costruzione Sincrotrone Elettra.jpg
Elettra synchrotron under construction

Elettra – Sincrotrone Trieste S.C.p.A. is a multidisciplinary international research center, specialized in generating high quality synchrotron and free-electron laser light and applying it in materials science. Its mission is to promote cultural, social and economic growth through:

The main assets of the research centre are two advanced light sources: the Elettra synchrotron (third generation electron storage ring, working at 2 and 2.4 GeV, in operation since October 1993) and the free-electron laser (FEL) FERMI, continuously (H24) operated supplying light of the selected energy and quality to more than 30 experimental stations on 28 beamlines. Since 1993, Elettra has been subjected to several updated that have allowed a top up operating mode from 2010 for both 2 and 2.4 GeV operational energy. [1] The accumulation ring is formed by twelve groups of magnets forming a ring of 260 m in circumference. The ring beam current at 2 GeV is normally set to 310 mA and the top-up operational mode foresees a new ring injection every 6 min: 1 mA electron in 4 seconds is injected, keeping the ring current constant in the range of 3‰. At 2.4 GeV the beam current is set to 140 mA, and the top-up injections occurs every 20 minutes: in this case, 1 mA electron in 4 s is injected keeping the current level constant to 7‰. At the actual condition, the spectral brightness available on most beamlines is up to 1019 photons/s/mm2/mrad2/0.1%bw. [1]

The FERMI FEL work in a SRHG method, operating at 2 GeV and producing coherent femtosecond light pulses with variable polarization, in an ultraviolet energy range. [1] The produced optical pulses are characterized by a High peak power (~ GW) delivered to 8 different beamlines. [2] The peak brightness of the FEL sources is expected to go up to 1030 photons/s/mm2/mrad2/0.1%bw. [3] [4]

These facilities enable the international community of researchers from academy and industry to characterize material properties and functions with sensitivity down to molecular and atomic levels, to pattern and nanofabricate new structures and devices, and to develop new processes. Every year scientists and engineers from more than 50 countries compete by submitting proposals to access and use time on these stations. These are selected by peer-reviewed by panels of international experts on the basis of scientific merit and potential impact, and the winners are granted valuable access time as a contribution to their research. Because of its central location in Europe, Elettra – Sincrotrone Trieste is increasingly attracting users from Central and Eastern European countries, where the demand for synchrotron radiation is in continuous growth, and is part of the primary network for science and technology of the Central European Initiative (CEI). The access by researchers from developing countries has tripled over the last few years, and the Indian research community is one of the largest users.

Elettra – Sincrotrone Trieste has been the coordinator of the EU-supported networks involving synchrotron and free electron lasers in the European area, in the last decade. Such networks promote transnational access, joint research activities and collaborations among the laboratories to improve the overall service offered to European users.

The facility, available for use by the Italian and international scientific communities, houses several ultra bright light sources, which use the synchrotron and free electron laser (FEL) sources to produce light ranging from ultraviolet to X-rays.

The centre also houses the European Storage Ring FEL Project (EUFELE). [5]

Related Research Articles

<span class="mw-page-title-main">DESY</span> German national research center

DESY, short for Deutsches Elektronen-Synchrotron, is a national research centre for fundamental science located in Hamburg and Zeuthen near Berlin in Germany. It operates particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research in four main areas: particle and high energy physics; photon science; astroparticle physics; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany and the Federal States of Hamburg and Brandenburg and is a member of the Helmholtz Association of German Research Centres.

<span class="mw-page-title-main">Synchrotron light source</span> Particle accelerator designed to produce intense x-ray beams

A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to convert high energy electrons into photons.

<span class="mw-page-title-main">Diamond Light Source</span> UKs national synchrotron science facility located in Oxfordshire

Diamond Light Source is the UK's national synchrotron light source science facility located at the Harwell Science and Innovation Campus in Oxfordshire.

<span class="mw-page-title-main">Synchrotron</span> Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 tera electronvolts (TeV or 1012 eV).

<span class="mw-page-title-main">Free-electron laser</span> Light source producing extremely brilliant and short pulses of radiation

A free-electron laser (FEL) is a light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecular excitations, it employs relativistic electrons as a gain medium. Radiation is generated by a bunch of electrons passing through a magnetic structure. In an FEL, this radiation is further amplified as the radiation re-interacts with the electron bunch such that the electrons start to emit coherently, thus allowing an exponential increase in overall radiation intensity.

<span class="mw-page-title-main">Stanford Synchrotron Radiation Lightsource</span>

The Stanford Synchrotron Radiation Lightsource, a division of SLAC National Accelerator Laboratory, is operated by Stanford University for the Department of Energy. SSRL is a National User Facility which provides synchrotron radiation, a name given to electromagnetic radiation in the x-ray, ultraviolet, visible and infrared realms produced by electrons circulating in a storage ring at nearly the speed of light. The extremely bright light that is produced can be used to investigate various forms of matter ranging from objects of atomic and molecular size to man-made materials with unusual properties. The obtained information and knowledge is of great value to society, with impact in areas such as the environment, future technologies, health, biology, basic research, and education.

The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) in Upton, New York was a national user research facility funded by the U.S. Department of Energy (DOE). Built from 1978 through 1984, and officially shut down on September 30, 2014, the NSLS was considered a second-generation synchrotron.

<span class="mw-page-title-main">Advanced Light Source</span>

The Advanced Light Source (ALS) is a research facility at Lawrence Berkeley National Laboratory in Berkeley, California. One of the world's brightest sources of ultraviolet and soft x-ray light, the ALS is the first "third-generation" synchrotron light source in its energy range, providing multiple extremely bright sources of intense and coherent short-wavelength light for use in scientific experiments by researchers from around the world. It is funded by the US Department of Energy (DOE) and operated by the University of California. In June 2018, Stephen Kevan became the director of the ALS.

<span class="mw-page-title-main">Synchrotron Radiation Center</span>

The Synchrotron Radiation Center (SRC), located in Stoughton, Wisconsin and operated by the University of Wisconsin–Madison, was a national synchrotron light source research facility, operating the Aladdin storage ring. From 1968 to 1987 SRC was the home of Tantalus, the first storage ring dedicated to the production of synchrotron radiation.

<span class="mw-page-title-main">ASTRID2</span>

<span class="mw-page-title-main">Swiss Light Source</span> Synchrotron radiation facility at Paul Scherrer Institute in Switzerland

The Swiss Light Source (SLS) is a synchrotron located at the Paul Scherrer Institute (PSI) in Switzerland for producing electromagnetic radiation of high brightness. Planning started in 1991, the project was approved in 1997, and first light from the storage ring was seen at December 15, 2000. The experimental program started in June 2001 and it is used for research in materials science, biology and chemistry.

<span class="mw-page-title-main">European XFEL</span>

<span class="mw-page-title-main">MAX IV Laboratory</span> Synchrotron radiation facility at Lund University in Sweden

MAX IV is a next-generation synchrotron radiation facility in Lund, Sweden. Its design and planning has been carried out within the Swedish national laboratory, MAX-lab, which up until 2015 operated three accelerators for synchrotron radiation research: MAX I, MAX II and MAX III. MAX-lab supported about 1000 users from over 30 countries annually. The facility operated 14 beamlines with a total of 19 independent experimental stations, supporting a wide range of experimental techniques such as macromolecular crystallography, electron spectroscopy, nanolithography and production of tagged photons for photo-nuclear experiments. The facility closed on 13 December 2015 in preparation for MAX IV.

<span class="mw-page-title-main">BESSY</span>

The Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m. b. H., abbreviated BESSY, is a research establishment in the Adlershof district of Berlin. Founded on 5 March 1979, it currently operates one of Germany's 3rd generation synchrotron radiation facilities, BESSY II. Originally part of the Leibniz Association, BESSY now belongs to the Helmholtz-Zentrum Berlin.

ANKA is a synchrotron light source facility at the Karlsruhe Institute of Technology (KIT). The KIT runs ANKA as a national synchrotron light source and as a large scale user facility for the international science community. Being a large scale machine of the performance category LK II of the Helmholtz Association, ANKA is part of a national and European infrastructure offering research services to scientific and commercial users for their purposes in research and development. The facility was opened to external users in 2003.

<span class="mw-page-title-main">National Synchrotron Light Source II</span> Research and Development Facility in New York, United States

The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) in Upton, New York is a national user research facility funded primarily by the U.S. Department of Energy's (DOE) Office of Science. NSLS-II is one of the world's most advanced synchrotron light sources, designed to produce x-rays 10,000 times brighter than BNL's original light source, the National Synchrotron Light Source (NSLS). NSLS-II supports basic and applied research in energy security, advanced materials synthesis and manufacturing, environment, and human health.

The Hiroshima Synchrotron Radiation Center, also known as Hiroshima Synchrotron Orbital Radiation (HiSOR), at Hiroshima University is a national user research facility in Japan. It was founded in 1996 by the University Science Council at Hiroshima University initially as a combined educational and research facility before opening to users in Japan and across the world in 2002. It is the only synchrotron radiation experimental facility located at a national university in Japan. The HiSOR experimental hall contains two undulators that produce light in the ultraviolet to soft x-ray range. A total of 16 beamlines are supported by bending magnet and undulator radiation for use in basic studies of life sciences and physical sciences, especially solid-state physics.

Diffraction-limited storage rings (DLSR), or ultra-low emittance storage rings, are synchrotron light sources where the emittance of the electron-beam in the storage ring is smaller or comparable to the emittance of the x-ray photon beam they produce at the end of their insertion devices. These facilities operate in the soft to hard x-ray range (100eV—100keV) with extremely high brilliance (in the order of 1021—1022 photons/s/mm2/mrad2/0.1%BW)

<span class="mw-page-title-main">Solaris (synchrotron)</span>

SOLARIS is the only synchrotron in Central-Eastern Europe. Built in Poland in 2015, under the auspices of the Jagiellonian University, it is located on the Campus of the 600th Anniversary of the Jagiellonian University Revival, in the southern part of Krakow. It is the central facility of the National Synchrotron Radiation Centre SOLARIS.

Sandra Gail Biedron is an American physicist who serves as the Director of Knowledge Transfer for the Center for Bright Beams as well as professor in Electrical & Computer Engineering and Mechanical Engineering at the University of New Mexico, where in 2021 she mentors nine graduate students and two post-doctoral researchers. Her research includes the development, control, operation and use of laser and particle accelerator systems. She is also Chief Scientist of Element Aero, a consulting and R&D company incorporated in 2002. She was elected Fellow of the American Physical Society in 2013.

References

  1. 1 2 3 "Elettra synchroton description".
  2. "FEL description webpage".
  3. "Elettra Sincrotrone Trieste". www.elettra.eu. Retrieved 2021-05-15.
  4. "Lightsources.org: Elettra". Archived from the original on 2006-10-11. Retrieved 2006-11-24.
  5. Status of the European storage ring FEL project at ELETTRA

See also

45°38′42.6″N13°50′55.2″E / 45.645167°N 13.848667°E / 45.645167; 13.848667