Electromagnetic tensor

Last updated

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

Contents

Definition

The electromagnetic tensor, conventionally labelled F, is defined as the exterior derivative of the electromagnetic four-potential, A, a differential 1-form: [1] [2]

Therefore, F is a differential 2-form—that is, an antisymmetric rank-2 tensor field—on Minkowski space. In component form,

where is the four-gradient and is the four-potential.

SI units for Maxwell's equations and the particle physicist's sign convention for the signature of Minkowski space (+ − − −), will be used throughout this article.

Relationship with the classical fields

The Faraday differential 2-form is given by

where is the time element times the speed of light .

This is the exterior derivative of its 1-form antiderivative

,

where has ( is a scalar potential for the irrotational/conservative vector field ) and has ( is a vector potential for the solenoidal vector field ).

Note that

where is the exterior derivative, is the Hodge star, (where is the electric current density, and is the electric charge density) is the 4-current density 1-form, is the differential forms version of Maxwell's equations.

The electric and magnetic fields can be obtained from the components of the electromagnetic tensor. The relationship is simplest in Cartesian coordinates:

where c is the speed of light, and

where is the Levi-Civita tensor. This gives the fields in a particular reference frame; if the reference frame is changed, the components of the electromagnetic tensor will transform covariantly, and the fields in the new frame will be given by the new components.

In contravariant matrix form with metric signature (+,-,-,-),

The covariant form is given by index lowering,

The Faraday tensor's Hodge dual is

From now on in this article, when the electric or magnetic fields are mentioned, a Cartesian coordinate system is assumed, and the electric and magnetic fields are with respect to the coordinate system's reference frame, as in the equations above.

Properties

The matrix form of the field tensor yields the following properties: [3]

  1. Antisymmetry:
  2. Six independent components: In Cartesian coordinates, these are simply the three spatial components of the electric field (Ex, Ey, Ez) and magnetic field (Bx, By, Bz).
  3. Inner product: If one forms an inner product of the field strength tensor a Lorentz invariant is formed
    meaning this number does not change from one frame of reference to another.
  4. Pseudoscalar invariant: The product of the tensor with its Hodge dual gives a Lorentz invariant:
    where is the rank-4 Levi-Civita symbol. The sign for the above depends on the convention used for the Levi-Civita symbol. The convention used here is .
  5. Determinant:
    which is proportional to the square of the above invariant.
  6. Trace:
    which is equal to zero.

Significance

This tensor simplifies and reduces Maxwell's equations as four vector calculus equations into two tensor field equations. In electrostatics and electrodynamics, Gauss's law and Ampère's circuital law are respectively:

and reduce to the inhomogeneous Maxwell equation:

, where is the four-current.

In magnetostatics and magnetodynamics, Gauss's law for magnetism and Maxwell–Faraday equation are respectively:

which reduce to the Bianchi identity:

or using the index notation with square brackets [note 1] for the antisymmetric part of the tensor:

Using the expression relating the Faraday tensor to the four-potential, one can prove that the above antisymmetric quantity turns to zero identically (). The implication of that identity is far-reaching: it means that the EM field theory leaves no room for magnetic monopoles and currents of such.

Relativity

The field tensor derives its name from the fact that the electromagnetic field is found to obey the tensor transformation law, this general property of physical laws being recognised after the advent of special relativity. This theory stipulated that all the laws of physics should take the same form in all coordinate systems – this led to the introduction of tensors. The tensor formalism also leads to a mathematically simpler presentation of physical laws.

The inhomogeneous Maxwell equation leads to the continuity equation:

implying conservation of charge.

Maxwell's laws above can be generalised to curved spacetime by simply replacing partial derivatives with covariant derivatives:

and

where the semi-colon notation represents a covariant derivative, as opposed to a partial derivative. These equations are sometimes referred to as the curved space Maxwell equations. Again, the second equation implies charge conservation (in curved spacetime):

Lagrangian formulation of classical electromagnetism

Classical electromagnetism and Maxwell's equations can be derived from the action:

where is over space and time.

This means the Lagrangian density is

The two middle terms in the parentheses are the same, as are the two outer terms, so the Lagrangian density is

Substituting this into the Euler–Lagrange equation of motion for a field:

So the Euler–Lagrange equation becomes:

The quantity in parentheses above is just the field tensor, so this finally simplifies to

That equation is another way of writing the two inhomogeneous Maxwell's equations (namely, Gauss's law and Ampère's circuital law) using the substitutions:

where i, j, k take the values 1, 2, and 3.

Hamiltonian form

The Hamiltonian density can be obtained with the usual relation,

.

Quantum electrodynamics and field theory

The Lagrangian of quantum electrodynamics extends beyond the classical Lagrangian established in relativity to incorporate the creation and annihilation of photons (and electrons):

where the first part in the right hand side, containing the Dirac spinor , represents the Dirac field. In quantum field theory it is used as the template for the gauge field strength tensor. By being employed in addition to the local interaction Lagrangian it reprises its usual role in QED.

See also

Notes

    1. ^ By definition,

      So if

      then

    1. J. A. Wheeler; C. Misner; K. S. Thorne (1973). Gravitation . W.H. Freeman & Co. ISBN   0-7167-0344-0.
    2. D. J. Griffiths (2007). Introduction to Electrodynamics (3rd ed.). Pearson Education, Dorling Kindersley. ISBN   978-81-7758-293-2.
    3. J. A. Wheeler; C. Misner; K. S. Thorne (1973). Gravitation . W.H. Freeman & Co. ISBN   0-7167-0344-0.

    Related Research Articles

    In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

    <span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

    The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

    The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .

    <span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

    In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

    <span class="mw-page-title-main">Electromagnetic four-potential</span> Relativistic vector field

    An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.

    In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

    In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

    A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

    <span class="mw-page-title-main">Electromagnetic stress–energy tensor</span> Type of stress-energy tensor

    In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

    <span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

    <span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

    In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

    <span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

    There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

    In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."

    <span class="mw-page-title-main">Classical electromagnetism and special relativity</span> Relationship between relativity and pre-quantum electromagnetism

    The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.

    <span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

    In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

    <span class="mw-page-title-main">Gluon field strength tensor</span> Second rank tensor in quantum chromodynamics

    In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks.

    The optical metric was defined by German theoretical physicist Walter Gordon in 1923 to study the geometrical optics in curved space-time filled with moving dielectric materials.

    Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

    <span class="mw-page-title-main">Loop representation in gauge theories and quantum gravity</span> Description of gauge theories using loop operators

    Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.

    In physics, zilch is a set of ten conserved quantities of the source-free electromagnetic field, which were discovered by Daniel M. Lipkin in 1964. The name refers to the fact that the zilches are only conserved in regions free of electric charge, and therefore have limited physical significance. One of the conserved quantities has an intuitive physical interpretation and is also known as optical chirality.

    References