Ethernet over coax

Last updated

Ethernet over Coax (EoC) is a family of technologies that supports the transmission of Ethernet frames over coaxial cable. The Institute of Electrical and Electronics Engineers (IEEE) maintains all official Ethernet standards in the IEEE 802 family.

Contents

History

The first Ethernet standard, known as 10BASE5 (ThickNet) in the family of IEEE 802.3, specified baseband operation over 50 ohm coaxial cable, which remained the principal medium into the 1980s, when 10BASE2 (ThinNet) coax replaced it in deployments in the 1980s; both being replaced in the 1990s when thinner, cheaper twisted pair cabling came to dominate the market. The use of coaxial cable for Ethernet has been deprecated by the IEEE as of 2011. [1]

Research in Ethernet transmission over coaxial cable continued, as both consumers and telecommunications operators strive to use existing 75 ohm coaxial cable installations (from cable television or CATV), to carry broadband data into and through the home, and into multiple dwelling unit (MDU) installations.

Most EoC technologies are being developed for in-home or on-premises networking and are expected to be operated within the domain of a single operator.

Homeplug

HomePlug AV as well as its later extension, HomePlug AV2 both operate in a portion of the RF spectrum directly below what is commonly used for terrestrial FM radio broadcasting. HomePlug AV uses BPSK, QPSK, 16 QAM, 64 QAM, 256 QAM, and 1024 QAM modulation strategies between 2 MHz and 30 MHz while the more recent HomePlug AV2 standard extends the upper bound of its spectral use to 86 MHz.

ITU-T G.hn

The ITU-T G.hn standard provides high-speed (up to 1 Gigabit/s) local area networking over existing home wires, including coaxial cable, power lines and phone lines. It defines an Application Protocol Convergence (APC) layer for encapsulation standard 802.3 Ethernet frames into G.hn MAC Service Data Units (MSDUs).

Other ITU-T standards for home networking over coaxial cable include G.9954, also known as HomePNA 3.1. [2]

MoCA

CATV compatibility

EoC research is focused on the use of existing cable television (CATV) infrastructure for Internet access or broadband data transmission for the purpose of being compatible with the existing CATV (or sometimes satellite television) broadcast signals simultaneously transmitted on the same cable. The EoC technologies must operate outside the frequency domain currently used for CATV or for satellite receiver to set-top box transmissions. Most EoC technologies are designed to operate in frequency bands above 1 GHz, which is the upper bound of television signals and for systems designed to operate in North America using the SCTE 55-1 and SCTE 55-2 CATV transmission systems, as well as in most of Europe and portions of Asia. In many localities CATV systems operate only up to 550 MHz or 750 MHz, wherein some EoC technologies focus on using spectrum between 550 MHz or 750 MHz and 1 GHz. Though less costly, they could potentially conflict with future spectrum expansion up to 1 GHz. Some markets focus on using this 750 MHz to 1 GHz spectrum for EoC, specifically avoiding EoC bands above 1 GHz due to potential ingress noise from over-the-air transmissions and cellular systems.

See also

Related Research Articles

Quadrature amplitude modulation (QAM) is the name of a family of digital modulation methods and a related family of analog modulation methods widely used in modern telecommunications to transmit information. It conveys two analog message signals, or two digital bit streams, by changing (modulating) the amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital modulation scheme or amplitude modulation (AM) analog modulation scheme. The two carrier waves are of the same frequency and are out of phase with each other by 90°, a condition known as orthogonality or quadrature. The transmitted signal is created by adding the two carrier waves together. At the receiver, the two waves can be coherently separated (demodulated) because of their orthogonality property. Another key property is that the modulations are low-frequency/low-bandwidth waveforms compared to the carrier frequency, which is known as the narrowband assumption.

<span class="mw-page-title-main">Ethernet over twisted pair</span> Ethernet physical layers using twisted-pair cables

Ethernet over twisted-pair technologies use twisted-pair cables for the physical layer of an Ethernet computer network. They are a subset of all Ethernet physical layers.

<span class="mw-page-title-main">Cable modem</span> Broadband Internet access device

A cable modem is a type of network bridge that provides bi-directional data communication via radio frequency channels on a hybrid fibre-coaxial (HFC), radio frequency over glass (RFoG) and coaxial cable infrastructure. Cable modems are primarily used to deliver broadband Internet access in the form of cable Internet, taking advantage of the high bandwidth of a HFC and RFoG network. They are commonly deployed in the Americas, Asia, Australia, and Europe.

<span class="mw-page-title-main">Fast Ethernet</span> Ethernet standards that carry data at the nominal rate of 100 Mbit/s

In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common.

The HomePNA Alliance is an incorporated non-profit industry association of companies that develops and standardizes technology for home networking over the existing coaxial cables and telephone wiring within homes, so new wires do not need to be installed.

10BROAD36 is an obsolete computer network standard in the Ethernet family. It was developed during the 1980s and specified in IEEE 802.3b-1985. The Institute of Electrical and Electronics Engineers standards committee IEEE 802 published the standard that was ratified in 1985 as an additional section 11 to the base Ethernet standard. It was also issued as ISO/IEC 8802-3 in 1989.

<span class="mw-page-title-main">Multichannel multipoint distribution service</span> Wireless communications technology

Multichannel multipoint distribution service (MMDS), formerly known as broadband radio service (BRS) and also known as wireless cable, is a wireless telecommunications technology, used for general-purpose broadband networking or, more commonly, as an alternative method of cable television programming reception.

Wireless local loop (WLL), is the use of a wireless communications link as the "last mile / first mile" connection for delivering plain old telephone service (POTS) or Internet access to telecommunications customers. Various types of WLL systems and technologies exist.

Data Over Cable Service Interface Specification (DOCSIS) is an international telecommunications standard that permits the addition of high-bandwidth data transfer to an existing cable television (CATV) system. It is used by many cable television operators to provide cable Internet access over their existing hybrid fiber-coaxial (HFC) infrastructure.

The S band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4 gigahertz (GHz). Thus it crosses the conventional boundary between the UHF and SHF bands at 3.0 GHz. The S band is used by airport surveillance radar for air traffic control, weather radar, surface ship radar, and some communications satellites, especially those satellites used by NASA to communicate with the Space Shuttle and the International Space Station. The 10 cm radar short-band ranges roughly from 1.55 to 5.2 GHz. The S band also contains the 2.4–2.483 GHz ISM band, widely used for low power unlicensed microwave devices such as cordless phones, wireless headphones (Bluetooth), wireless networking (WiFi), garage door openers, keyless vehicle locks, baby monitors as well as for medical diathermy machines and microwave ovens. India's regional satellite navigation network (IRNSS) broadcasts on 2.483778 to 2.500278 GHz.

HomePlug is the family name for various power line communications specifications under the HomePlug designation, each with unique capabilities and compatibility with other HomePlug specifications.

<span class="mw-page-title-main">Passive optical network</span> Technology used to provide broadband to the end consumer via fiber

A passive optical network (PON) is a fiber-optic telecommunications technology for delivering broadband network access to end-customers. Its architecture implements a point-to-multipoint topology in which a single optical fiber serves multiple endpoints by using unpowered (passive) fiber optic splitters to divide the fiber bandwidth among the endpoints. Passive optical networks are often referred to as the last mile between an Internet service provider (ISP) and its customers. Many fiber ISPs prefer this technology.

<span class="mw-page-title-main">Multimedia over Coax Alliance</span> International standards consortium that publishes specifications for networking over coaxial cable

The Multimedia over Coax Alliance (MoCA) is an international standards consortium that publishes specifications for networking over coaxial cable. The technology was originally developed to distribute IP television in homes using existing cabling, but is now used as a general-purpose Ethernet link where it is inconvenient or undesirable to replace existing coaxial cable with optical fiber or twisted pair cabling.

<span class="mw-page-title-main">Ethernet physical layer</span> Electrical or optical properties between network devices

The physical-layer specifications of the Ethernet family of computer network standards are published by the Institute of Electrical and Electronics Engineers (IEEE), which defines the electrical or optical properties and the transfer speed of the physical connection between a device and the network or between network devices. It is complemented by the MAC layer and the logical link layer.

Ethernet in the first mile (EFM) refers to using one of the Ethernet family of computer network technologies between a telecommunications company and a customer's premises. From the customer's point of view, it is their first mile, although from the access network's point of view it is known as the last mile.

<span class="mw-page-title-main">Video sender</span> Device for transmitting audio and video signals wirelessly

A video sender is a device for transmitting domestic audio and video signals wirelessly from one location to another. It is most commonly used for sending the output of a source device, such as a satellite television decoder, to a television in another part of a property and provides an alternative to cable installations.

IEEE 802.11a-1999 or 802.11a was an amendment to the IEEE 802.11 wireless local network specifications that defined requirements for an orthogonal frequency-division multiplexing (OFDM) communication system. It was originally designed to support wireless communication in the unlicensed national information infrastructure (U-NII) bands as regulated in the United States by the Code of Federal Regulations, Title 47, Section 15.407.

IEEE 802.11g-2003 or 802.11g is an amendment to the IEEE 802.11 specification that operates in the 2.4 GHz microwave band. The standard has extended link rate to up to 54 Mbit/s using the same 20 MHz bandwidth as 802.11b uses to achieve 11 Mbit/s. This specification under the marketing name of Wi-Fi has been implemented all over the world. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007 standard, and Clause 19 of the published IEEE 802.11-2012 standard.

Networking cables are networking hardware used to connect one network device to other network devices or to connect two or more computers to share devices such as printers or scanners. Different types of network cables, such as coaxial cable, optical fiber cable, and twisted pair cables, are used depending on the network's topology, protocol, and size. The devices can be separated by a few meters or nearly unlimited distances.

In telecommunications, radio frequency over glass (RFoG) is a deep-fiber network design in which the coax portion of the hybrid fiber coax (HFC) network is replaced by a single-fiber passive optical network (PON). Downstream and return-path transmission use different wavelengths to share the same fiber. The return-path wavelength standard is expected to be 1610 nm, but early deployments have used 1590 nm. Using 1590/1610 nm for the return path allows the fiber infrastructure to support both RFoG and a standards-based PON simultaneously, operating with 1490 nm downstream and 1310 nm return-path wavelengths.

References

  1. IEEE 802.3-2012 10. Medium attachment unit and baseband medium specifications, type 10BASE2
  2. ITU-T Study Group 15 (January 14, 2008). "ITU-T Rec. G.9954 (01/2007) Home networking transceivers - Enhanced physical, media access, and link layer specifications" (PDF). International Telecommunication Union (ITU). Retrieved April 12, 2021.