Excited state

Last updated

After absorbing energy, an electron may jump from the ground state to a higher energy excited state. Energy levels.svg
After absorbing energy, an electron may jump from the ground state to a higher energy excited state.
Excitations of copper 3d orbitals on the CuO2 plane of a high-Tc superconductor. The ground state (blue) is x -y orbitals; the excited orbitals are in green; the arrows illustrate inelastic x-ray spectroscopy. CuO2-plane in high Tc superconductor.png
Excitations of copper 3d orbitals on the CuO2 plane of a high-Tc superconductor. The ground state (blue) is xy orbitals; the excited orbitals are in green; the arrows illustrate inelastic x-ray spectroscopy.

In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature).

Contents

The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation.

Long-lived excited states are often called metastable. Long-lived nuclear isomers and singlet oxygen are two examples of this.

Atomic excitation

Atoms can be excited by heat, electricity, or light. The hydrogen atom provides a simple example of this concept.

The ground state of the hydrogen atom has the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has been demonstrated to have the lowest possible quantum numbers). By giving the atom additional energy (for example, by absorption of a photon of an appropriate energy), the electron moves into an excited state (one with one or more quantum numbers greater than the minimum possible). When the electron find itself between two states, a shift which happens very fast, it's in a superposition of both states. [1] If the photon has too much energy, the electron will cease to be bound to the atom, and the atom will become ionized.

After excitation the atom may return to the ground state or a lower excited state, by emitting a photon with a characteristic energy. Emission of photons from atoms in various excited states leads to an electromagnetic spectrum showing a series of characteristic emission lines (including, in the case of the hydrogen atom, the Lyman, Balmer, Paschen and Brackett series).

An atom in a high excited state is termed a Rydberg atom. A system of highly excited atoms can form a long-lived condensed excited state, Rydberg matter.

Perturbed gas excitation

A collection of molecules forming a gas can be considered in an excited state if one or more molecules are elevated to kinetic energy levels such that the resulting velocity distribution departs from the equilibrium Boltzmann distribution. This phenomenon has been studied in the case of a two-dimensional gas in some detail, analyzing the time taken to relax to equilibrium.

Calculation of excited states

Excited states are often calculated using coupled cluster, Møller–Plesset perturbation theory, multi-configurational self-consistent field, configuration interaction, [2] and time-dependent density functional theory. [3] [4] [5] [6] [7] [8]

Excited-state absorption

The excitation of a system (an atom or molecule) from one excited state to a higher-energy excited state with the absorption of a photon is called excited-state absorption (ESA). Excited-state absorption is possible only when an electron has been already excited from the ground state to a lower excited state. The excited-state absorption is usually an undesired effect, but it can be useful in upconversion pumping. [9] Excited-state absorption measurements are done using pump–probe techniques such as flash photolysis. However, it is not easy to measure them compared to ground-state absorption, and in some cases complete bleaching of the ground state is required to measure excited-state absorption. [10]

Reaction

A further consequence of excited-state formation may be reaction of the atom or molecule in its excited state, as in photochemistry.

See also

Related Research Articles

<span class="mw-page-title-main">Covalent bond</span> Chemical bond by sharing of electron pairs

A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding. For many molecules, the sharing of electrons allows each atom to attain the equivalent of a full valence shell, corresponding to a stable electronic configuration. In organic chemistry, covalent bonding is much more common than ionic bonding.

In physics, specifically statistical mechanics, a population inversion occurs while a system exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy states. It is called an "inversion" because in many familiar and commonly encountered physical systems, this is not possible. This concept is of fundamental importance in laser science because the production of a population inversion is a necessary step in the workings of a standard laser.

Spontaneous emission is the process in which a quantum mechanical system transits from an excited energy state to a lower energy state and emits a quantized amount of energy in the form of a photon. Spontaneous emission is ultimately responsible for most of the light we see all around us; it is so ubiquitous that there are many names given to what is essentially the same process. If atoms are excited by some means other than heating, the spontaneous emission is called luminescence. For example, fireflies are luminescent. And there are different forms of luminescence depending on how excited atoms are produced. If the excitation is effected by the absorption of radiation the spontaneous emission is called fluorescence. Sometimes molecules have a metastable level and continue to fluoresce long after the exciting radiation is turned off; this is called phosphorescence. Figurines that glow in the dark are phosphorescent. Lasers start via spontaneous emission, then during continuous operation work by stimulated emission.

<span class="mw-page-title-main">Energy level</span> Different states of quantum systems

A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The term is commonly used for the energy levels of the electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized.

<span class="mw-page-title-main">Photoluminescence</span> Light emission from substances after they absorb photons

Photoluminescence is light emission from any form of matter after the absorption of photons. It is one of many forms of luminescence and is initiated by photoexcitation, hence the prefix photo-. Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.

<span class="mw-page-title-main">Electron configuration</span> Mode of arrangement of electrons in different shells of an atom

In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals. For example, the electron configuration of the neon atom is 1s2 2s2 2p6, meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six electrons, respectively.

<span class="mw-page-title-main">Emission spectrum</span> Frequencies of light emitted by atoms or chemical compounds

The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a transition from a high energy state to a lower energy state. The photon energy of the emitted photons is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, spectroscopy can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.

<span class="mw-page-title-main">Photochemistry</span> Sub-discipline of chemistry

Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet, visible light (400–750 nm) or infrared radiation (750–2500 nm).

<span class="mw-page-title-main">Intersystem crossing</span>

Intersystem crossing (ISC) is an isoenergetic radiationless process involving a transition between the two electronic states with different spin multiplicity.

<span class="mw-page-title-main">Rydberg atom</span> Excited atomic quantum state with high principal quantum number (n)

A Rydberg atom is an excited atom with one or more electrons that have a very high principal quantum number, n. The higher the value of n, the farther the electron is from the nucleus, on average. Rydberg atoms have a number of peculiar properties including an exaggerated response to electric and magnetic fields, long decay periods and electron wavefunctions that approximate, under some conditions, classical orbits of electrons about the nuclei. The core electrons shield the outer electron from the electric field of the nucleus such that, from a distance, the electric potential looks identical to that experienced by the electron in a hydrogen atom.

<span class="mw-page-title-main">Franck–Condon principle</span> Quantum chemistry rule regarding vibronic transitions

The Franck–Condon principle is a rule in spectroscopy and quantum chemistry that explains the intensity of vibronic transitions. The principle states that during an electronic transition, a change from one vibrational energy level to another will be more likely to happen if the two vibrational wave functions overlap more significantly.

Electronic correlation is the interaction between electrons in the electronic structure of a quantum system. The correlation energy is a measure of how much the movement of one electron is influenced by the presence of all other electrons.

<span class="mw-page-title-main">Photosensitizer</span> Type of molecule reacting to light

Photosensitizers are light absorbers that alter the course of a photochemical reaction. They usually are catalysts. They can function by many mechanisms, sometimes they donate an electron to the substrate, sometimes they abstract a hydrogen atom from the substrate. At the end of this process, the photosensitizer returns to its ground state, where it remains chemically intact, poised to absorb more light. One branch of chemistry which frequently utilizes photosensitizers is polymer chemistry, using photosensitizers in reactions such as photopolymerization, photocrosslinking, and photodegradation. Photosensitizers are also used to generate prolonged excited electronic states in organic molecules with uses in photocatalysis, photon upconversion and photodynamic therapy. Generally, photosensitizers absorb electromagnetic radiation consisting of infrared radiation, visible light radiation, and ultraviolet radiation and transfer absorbed energy into neighboring molecules. This absorption of light is made possible by photosensitizers' large de-localized π-systems, which lowers the energy of HOMO and LUMO orbitals to promote photoexcitation. While many photosensitizers are organic or organometallic compounds, there are also examples of using semiconductor quantum dots as photosensitizers.

A Rydberg molecule is an electronically excited chemical species. Electronically excited molecular states are generally quite different in character from electronically excited atomic states. However, particularly for highly electronically excited molecular systems, the ionic core interaction with an excited electron can take on the general aspects of the interaction between the proton and the electron in the hydrogen atom. The spectroscopic assignment of these states follows the Rydberg formula, named after the Swedish physicist Johannes Rydberg, and they are called Rydberg states of molecules. Rydberg series are associated with partially removing an electron from the ionic core.

<span class="mw-page-title-main">Kasha's rule</span> Law of photochemistry

Kasha's rule is a principle in the photochemistry of electronically excited molecules. The rule states that photon emission occurs in appreciable yield only from the lowest excited state of a given multiplicity. It is named after American spectroscopist Michael Kasha, who proposed it in 1950.

A heavy Rydberg system consists of a weakly bound positive and negative ion orbiting their common centre of mass. Such systems share many properties with the conventional Rydberg atom and consequently are sometimes referred to as heavy Rydberg atoms. While such a system is a type of ionically bound molecule, it should not be confused with a molecular Rydberg state, which is simply a molecule with one or more highly excited electrons.

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.

In X-ray absorption spectroscopy, the K-edge is a sudden increase in x-ray absorption occurring when the energy of the X-rays is just above the binding energy of the innermost electron shell of the atoms interacting with the photons. The term is based on X-ray notation, where the innermost electron shell is known as the K-shell. Physically, this sudden increase in attenuation is caused by the photoelectric absorption of the photons. For this interaction to occur, the photons must have more energy than the binding energy of the K-shell electrons (K-edge). A photon having an energy just above the binding energy of the electron is therefore more likely to be absorbed than a photon having an energy just below this binding energy or significantly above it.

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

Bond softening is an effect of reducing the strength of a chemical bond by strong laser fields. To make this effect significant, the strength of the electric field in the laser light has to be comparable with the electric field the bonding electron "feels" from the nuclei of the molecule. Such fields are typically in the range of 1–10 V/Å, which corresponds to laser intensities 1013–1015 W/cm2. Nowadays, these intensities are routinely achievable from table-top Ti:Sapphire lasers.

References

  1. Quantum Leaps, Long Assumed to Be Instantaneous, Take Time
  2. Hehre, Warren J. (2003). A Guide to Molecular Mechanics and Quantum Chemical Calculations (PDF). Irvine, California: Wavefunction, Inc. ISBN   1-890661-06-6.
  3. Glaesemann, Kurt R.; Govind, Niranjan; Krishnamoorthy, Sriram; Kowalski, Karol (2010). "EOMCC, MRPT, and TDDFT Studies of Charge Transfer Processes in Mixed-Valence Compounds: Application to the Spiro Molecule". The Journal of Physical Chemistry A. 114 (33): 8764–8771. Bibcode:2010JPCA..114.8764G. doi:10.1021/jp101761d. PMID   20540550.
  4. Dreuw, Andreas; Head-Gordon, Martin (2005). "Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules". Chemical Reviews. 105 (11): 4009–37. doi:10.1021/cr0505627. PMID   16277369.
  5. Knowles, Peter J.; Werner, Hans-Joachim (1992). "Internally contracted multiconfiguration-reference configuration interaction calculations for excited states". Theoretica Chimica Acta. 84 (1–2): 95–103. doi:10.1007/BF01117405. S2CID   96830841.
  6. Foresman, James B.; Head-Gordon, Martin; Pople, John A.; Frisch, Michael J. (1992). "Toward a systematic molecular orbital theory for excited states". The Journal of Physical Chemistry. 96: 135–149. doi:10.1021/j100180a030.
  7. Glaesemann, Kurt R.; Gordon, Mark S.; Nakano, Haruyuki (1999). "A study of FeCO+ with correlated wavefunctions". Physical Chemistry Chemical Physics. 1 (6): 967–975. Bibcode:1999PCCP....1..967G. doi:10.1039/a808518h.
  8. Ariyarathna, Isuru (2021-03-01). First Principle Studies on Ground and Excited Electronic States: Chemical Bonding in Main-Group Molecules, Molecular Systems with Diffuse Electrons, and Water Activation using Transition Metal Monoxides (Thesis). hdl: 10415/7601 .
  9. Paschotta, Rüdiger. "Excited-state Absorption". www.rp-photonics.com.
  10. Dolan, Giora; Goldschmidt, Chmouel R. (1976). "A new method for absolute absorption cross-section measurements: rhodamine-6G excited singlet-singlet absorption spectrum". Chemical Physics Letters. 39 (2): 320–322. Bibcode:1976CPL....39..320D. doi:10.1016/0009-2614(76)80085-1.