Finite topological space

Last updated

In mathematics, a finite topological space is a topological space for which the underlying point set is finite. That is, it is a topological space which has only finitely many elements.

Contents

Finite topological spaces are often used to provide examples of interesting phenomena or counterexamples to plausible sounding conjectures. William Thurston has called the study of finite topologies in this sense "an oddball topic that can lend good insight to a variety of questions". [1]

Topologies on a finite set

Let be a finite set. A topology on is a subset of (the power set of ) such that

  1. and .
  2. if then .
  3. if then .

In other words, a subset of is a topology if contains both and and is closed under arbitrary unions and intersections. Elements of are called open sets. The general description of topological spaces requires that a topology be closed under arbitrary (finite or infinite) unions of open sets, but only under intersections of finitely many open sets. Here, that distinction is unnecessary. Since the power set of a finite set is finite there can be only finitely many open sets (and only finitely many closed sets).

A topology on a finite set can also be thought of as a sublattice of which includes both the bottom element and the top element .

Examples

0 or 1 points

There is a unique topology on the empty set ∅. The only open set is the empty one. Indeed, this is the only subset of ∅.

Likewise, there is a unique topology on a singleton set {a}. Here the open sets are ∅ and {a}. This topology is both discrete and trivial, although in some ways it is better to think of it as a discrete space since it shares more properties with the family of finite discrete spaces.

For any topological space X there is a unique continuous function from ∅ to X, namely the empty function. There is also a unique continuous function from X to the singleton space {a}, namely the constant function to a. In the language of category theory the empty space serves as an initial object in the category of topological spaces while the singleton space serves as a terminal object.

2 points

Let X = {a,b} be a set with 2 elements. There are four distinct topologies on X:

  1. {∅, {a,b}} (the trivial topology)
  2. {∅, {a}, {a,b}}
  3. {∅, {b}, {a,b}}
  4. {∅, {a}, {b}, {a,b}} (the discrete topology)

The second and third topologies above are easily seen to be homeomorphic. The function from X to itself which swaps a and b is a homeomorphism. A topological space homeomorphic to one of these is called a Sierpiński space. So, in fact, there are only three inequivalent topologies on a two-point set: the trivial one, the discrete one, and the Sierpiński topology.

The specialization preorder on the Sierpiński space {a,b} with {b} open is given by: aa, bb, and ab.

3 points

Let X = {a,b,c} be a set with 3 elements. There are 29 distinct topologies on X but only 9 inequivalent topologies:

  1. {∅, {a,b,c}}
  2. {∅, {c}, {a,b,c}}
  3. {∅, {a,b}, {a,b,c}}
  4. {∅, {c}, {a,b}, {a,b,c}}
  5. {∅, {c}, {b,c}, {a,b,c}} (T0)
  6. {∅, {c}, {a,c}, {b,c}, {a,b,c}} (T0)
  7. {∅, {a}, {b}, {a,b}, {a,b,c}} (T0)
  8. {∅, {b}, {c}, {a,b}, {b,c}, {a,b,c}} (T0)
  9. {∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}} (T0)

The last 5 of these are all T0. The first one is trivial, while in 2, 3, and 4 the points a and b are topologically indistinguishable.

4 points

Let X = {a,b,c,d} be a set with 4 elements. There are 355 distinct topologies on X but only 33 inequivalent topologies:

  1. {∅, {a, b, c, d}}
  2. {∅, {a, b, c}, {a, b, c, d}}
  3. {∅, {a}, {a, b, c, d}}
  4. {∅, {a}, {a, b, c}, {a, b, c, d}}
  5. {∅, {a, b}, {a, b, c, d}}
  6. {∅, {a, b}, {a, b, c}, {a, b, c, d}}
  7. {∅, {a}, {a, b}, {a, b, c, d}}
  8. {∅, {a}, {b}, {a, b}, {a, b, c, d}}
  9. {∅, {a, b, c}, {d}, {a, b, c, d}}
  10. {∅, {a}, {a, b, c}, {a, d}, {a, b, c, d}}
  11. {∅, {a}, {a, b, c}, {d}, {a, d}, {a, b, c, d}}
  12. {∅, {a}, {b, c}, {a, b, c}, {a, d}, {a, b, c, d}}
  13. {∅, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}}
  14. {∅, {a, b}, {c}, {a, b, c}, {a, b, c, d}}
  15. {∅, {a, b}, {c}, {a, b, c}, {a, b, d}, {a, b, c, d}}
  16. {∅, {a, b}, {c}, {a, b, c}, {d}, {a, b, d}, {c, d}, {a, b, c, d}}
  17. {∅, {b, c}, {a, d}, {a, b, c, d}}
  18. {∅, {a}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  19. {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}} (T0)
  20. {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}} (T0)
  21. {∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}} (T0)
  22. {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, c, d}} (T0)
  23. {∅, {a}, {a, b}, {c}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  24. {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  25. {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  26. {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  27. {∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {a, d}, {a, b, d}, {a, b, c, d}} (T0)
  28. {∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
  29. {∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
  30. {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, b, d}, {a, b, c, d}} (T0)
  31. {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}} (T0)
  32. {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {a, b, c, d}} (T0)
  33. {∅, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {d}, {a, d}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}} (T0)

The last 16 of these are all T0.

Properties

Specialization preorder

Topologies on a finite set X are in one-to-one correspondence with preorders on X. Recall that a preorder on X is a binary relation on X which is reflexive and transitive.

Given a (not necessarily finite) topological space X we can define a preorder on X by

xy if and only if x cl{y}

where cl{y} denotes the closure of the singleton set {y}. This preorder is called the specialization preorder on X. Every open set U of X will be an upper set with respect to ≤ (i.e. if xU and xy then yU). Now if X is finite, the converse is also true: every upper set is open in X. So for finite spaces, the topology on X is uniquely determined by ≤.

Going in the other direction, suppose (X, ≤) is a preordered set. Define a topology τ on X by taking the open sets to be the upper sets with respect to ≤. Then the relation ≤ will be the specialization preorder of (X, τ). The topology defined in this way is called the Alexandrov topology determined by ≤.

The equivalence between preorders and finite topologies can be interpreted as a version of Birkhoff's representation theorem, an equivalence between finite distributive lattices (the lattice of open sets of the topology) and partial orders (the partial order of equivalence classes of the preorder). This correspondence also works for a larger class of spaces called finitely generated spaces. Finitely generated spaces can be characterized as the spaces in which an arbitrary intersection of open sets is open. Finite topological spaces are a special class of finitely generated spaces.


Compactness and countability

Every finite topological space is compact since any open cover must already be finite. Indeed, compact spaces are often thought of as a generalization of finite spaces since they share many of the same properties.

Every finite topological space is also second-countable (there are only finitely many open sets) and separable (since the space itself is countable).

Separation axioms

If a finite topological space is T1 (in particular, if it is Hausdorff) then it must, in fact, be discrete. This is because the complement of a point is a finite union of closed points and therefore closed. It follows that each point must be open.

Therefore, any finite topological space which is not discrete cannot be T1, Hausdorff, or anything stronger.

However, it is possible for a non-discrete finite space to be T0. In general, two points x and y are topologically indistinguishable if and only if xy and yx, where ≤ is the specialization preorder on X. It follows that a space X is T0 if and only if the specialization preorder ≤ on X is a partial order. There are numerous partial orders on a finite set. Each defines a unique T0 topology.

Similarly, a space is R0 if and only if the specialization preorder is an equivalence relation. Given any equivalence relation on a finite set X the associated topology is the partition topology on X. The equivalence classes will be the classes of topologically indistinguishable points. Since the partition topology is pseudometrizable, a finite space is R0 if and only if it is completely regular.

Non-discrete finite spaces can also be normal. The excluded point topology on any finite set is a completely normal T0 space which is non-discrete.

Connectivity

Connectivity in a finite space X is best understood by considering the specialization preorder ≤ on X. We can associate to any preordered set X a directed graph Γ by taking the points of X as vertices and drawing an edge xy whenever xy. The connectivity of a finite space X can be understood by considering the connectivity of the associated graph Γ.

In any topological space, if xy then there is a path from x to y. One can simply take f(0) = x and f(t) = y for t> 0. It is easily to verify that f is continuous. It follows that the path components of a finite topological space are precisely the (weakly) connected components of the associated graph Γ. That is, there is a topological path from x to y if and only if there is an undirected path between the corresponding vertices of Γ.

Every finite space is locally path-connected since the set

is a path-connected open neighborhood of x that is contained in every other neighborhood. In other words, this single set forms a local base at x.

Therefore, a finite space is connected if and only if it is path-connected. The connected components are precisely the path components. Each such component is both closed and open in X.

Finite spaces may have stronger connectivity properties. A finite space X is

For example, the particular point topology on a finite space is hyperconnected while the excluded point topology is ultraconnected. The Sierpiński space is both.

Additional structure

A finite topological space is pseudometrizable if and only if it is R0. In this case, one possible pseudometric is given by

where xy means x and y are topologically indistinguishable. A finite topological space is metrizable if and only if it is discrete.

Likewise, a topological space is uniformizable if and only if it is R0. The uniform structure will be the pseudometric uniformity induced by the above pseudometric.

Algebraic topology

Perhaps surprisingly, there are finite topological spaces with nontrivial fundamental groups. A simple example is the pseudocircle, which is space X with four points, two of which are open and two of which are closed. There is a continuous map from the unit circle S1 to X which is a weak homotopy equivalence (i.e. it induces an isomorphism of homotopy groups). It follows that the fundamental group of the pseudocircle is infinite cyclic.

More generally it has been shown that for any finite abstract simplicial complex K, there is a finite topological space XK and a weak homotopy equivalence f : |K| → XK where |K| is the geometric realization of K. It follows that the homotopy groups of |K| and XK are isomorphic. In fact, the underlying set of XK can be taken to be K itself, with the topology associated to the inclusion partial order.

Number of topologies on a finite set

As discussed above, topologies on a finite set are in one-to-one correspondence with preorders on the set, and T0 topologies are in one-to-one correspondence with partial orders. Therefore, the number of topologies on a finite set is equal to the number of preorders and the number of T0 topologies is equal to the number of partial orders.

The table below lists the number of distinct (T0) topologies on a set with n elements. It also lists the number of inequivalent (i.e. nonhomeomorphic) topologies.

Number of topologies on a set with n points
nDistinct
topologies
Distinct
T0 topologies
Inequivalent
topologies
Inequivalent
T0 topologies
01111
11111
24332
3291995
43552193316
56942423113963
6209527130023718318
79535241612985945352045
86427793544317233793597916999
96326028942344511042511363083183231
108977053873043661106524878347176872567284
OEIS A000798 A001035 A001930 A000112

Let T(n) denote the number of distinct topologies on a set with n points. There is no known simple formula to compute T(n) for arbitrary n. The Online Encyclopedia of Integer Sequences presently lists T(n) for n ≤ 18.

The number of distinct T0 topologies on a set with n points, denoted T0(n), is related to T(n) by the formula

where S(n,k) denotes the Stirling number of the second kind.

See also

Related Research Articles

<span class="mw-page-title-main">Normed vector space</span> Vector space on which a distance is defined

In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms:

  1. Non-negativity: for every ,.
  2. Positive definiteness: for every , if and only if is the zero vector.
  3. Absolute homogeneity: for every and ,
  4. Triangle inequality: for every and ,

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

<span class="mw-page-title-main">Open set</span> Basic subset of a topological space

In mathematics, an open set is a generalization of an open interval in the real line.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a base (or basis; PL: bases) for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.

In topology and related branches of mathematics, a topological space X is a T0 space or Kolmogorov space (named after Andrey Kolmogorov) if for every pair of distinct points of X, at least one of them has a neighborhood not containing the other. In a T0 space, all points are topologically distinguishable.

In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

A CW complex is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation. The C stands for "closure-finite", and the W for "weak" topology.

In mathematics, the Sierpiński space is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński.

In topology, an Alexandrov topology is a topology in which the intersection of every family of open sets is open. It is an axiom of topology that the intersection of every finite family of open sets is open; in Alexandrov topologies the finite restriction is dropped.

In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest.

In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group. These concepts are named after the mathematician J. H. C. Whitehead.

In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory and functional analysis. It was introduced by Ralph Fox in 1945.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

The pseudocircle is the finite topological space X consisting of four distinct points {a,b,c,d } with the following non-Hausdorff topology:

In topology, a coherent topology is a topology that is uniquely determined by a family of subspaces. Loosely speaking, a topological space is coherent with a family of subspaces if it is a topological union of those subspaces. It is also sometimes called the weak topology generated by the family of subspaces, a notion that is quite different from the notion of a weak topology generated by a set of maps.

In topology, two points of a topological space X are topologically indistinguishable if they have exactly the same neighborhoods. That is, if x and y are points in X, and Nx is the set of all neighborhoods that contain x, and Ny is the set of all neighborhoods that contain y, then x and y are "topologically indistinguishable" if and only if Nx = Ny. (See Hausdorff's axiomatic neighborhood systems.)

In functional analysis and related areas of mathematics, a metrizable topological vector space (TVS) is a TVS whose topology is induced by a metric. An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.

References

  1. Thurston, William P. (April 1994). "On Proof and Progress in Mathematics". Bulletin of the American Mathematical Society . 30 (2): 161–177. arXiv: math/9404236 . doi:10.1090/S0273-0979-1994-00502-6.