Firewall (construction)

Last updated
Firewall residential construction, separating the building into two separate residential units, and fire areas Brandwand 2.jpg
Firewall residential construction, separating the building into two separate residential units, and fire areas
Example of a firewall used to inhibit the spread of a fire at an electrical substation Power systems in Toppila Jun2008.jpg
Example of a firewall used to inhibit the spread of a fire at an electrical substation

A firewall is a fire-resistant barrier used to prevent the spread of fire. Firewalls are built between or through buildings, structures, or electrical substation transformers, or within an aircraft or vehicle.

Contents

Applications

Firewalls can be used to subdivide a building into separate fire areas and are constructed in accordance with the locally applicable building codes. Firewalls are a portion of a building's passive fire protection systems.

Firewalls can be used to separate-high value transformers at an electrical substation in the event of a mineral oil tank rupture and ignition. The firewall serves as a fire containment wall between one oil-filled transformer and other neighboring transformers, building structures, and site equipment.

Types

A building under construction, showing the structurally independent cinderblock firewalls subdividing the building Firewall construction 2.JPG
A building under construction, showing the structurally independent cinderblock firewalls subdividing the building
Building 4 of the Waynesboro Outlet Village, showing a concrete firewall running through the building Waynesboro Outlet Village Building 4.jpg
Building 4 of the Waynesboro Outlet Village, showing a concrete firewall running through the building
Concrete firewalls still standing on Building 7 of the former Waynesboro Outlet Village, following a firefighter training exercise which intentionally burned the building Waynesboro Outlet Village Building 7 after fire.jpg
Concrete firewalls still standing on Building 7 of the former Waynesboro Outlet Village, following a firefighter training exercise which intentionally burned the building

There are three main classifications of fire rated walls: fire walls, fire barriers, and fire partitions.

Fire barrier walls are typically continuous from an exterior wall to an exterior wall, or from a floor below to a floor or roof above, or from one fire barrier wall to another fire barrier wall, having a fire resistance rating equal to or greater than the required rating for the application. Fire barriers are continuous through concealed spaces (e.g., above a ceiling) to the floor deck or roof deck above the barrier. Fire partitions are not required to extend through concealed spaces if the construction assembly forming the bottom of the concealed space, such as the ceiling, has a fire resistance rating at least equal to or greater than the fire partition. [3]

Portions of structures that are subdivided by fire walls are permitted to be considered separate buildings, in that fire walls have sufficient structural stability to maintain the integrity of the wall in the event of the collapse of the building construction on either side of the wall. [5]

Characteristics

Materials

Firewalls between the old buildings in Ulan-Ude Smolina 20, Ulan-Ude.jpg
Firewalls between the old buildings in Ulan-Ude

Performance based design

Firewalls are used in varied applications that require specific design and performance specifications. Knowing the potential conditions that may exist during a fire are critical to selecting and installing an effective firewall. For example, a firewall designed to meet National Fire Protection Agency, (NFPA), 221-09 section A.5.7 which indicates an average temperature of 800 °F (425 °C), is not designed to withstand higher temperatures such as would be present in higher challenge fires, and as a result would fail to function for the expected duration of the listed wall rating.

Performance based design takes into account the potential conditions during a fire. Understanding thermal limitations of materials is essential to using the correct material for the application. Laboratory testing is used to simulate fire scenarios and wall loading conditions. The testing results in an assigned listing number for the fire-rated assembly that defines the expected fire resistance duration and wall structural integrity under the tested conditions. Designers may elect to specify a listed fire wall assembly or design a wall system that would require performance testing to certify the expected protections before use of the designed fire-rated wall system.

High-voltage transformer fire barriers

Fire barriers are used around large electrical transformers as firewalls. These barriers are used to isolate one transformer in case of fire or explosions, preventing fire propagation to neighboring transformers.

See also

Notes

  1. NFPA 221, Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls, 2009 Edition, section 3.3.14.6, NFPA 850-10 Fire Protection fotric Generating Plants and High Voltage DC Converter Stations 2010 Edition section 5.1.4.3-4
  2. NFPA 221, Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls, 2009 Edition, section 3.3.14.5
  3. NFPA 221, Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls, 2006 Edition, section 3.3.12.7
  4. NFPA 221, Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls, 2009 Edition, section 3.3.14.7, NFPA 850-10 Fire Protection for Electric Generating Plants and High Voltage DC Converter Stations 2010 Edition section 5.1.4.3-4
  5. NFPA 221, Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls, 2006 Edition, section A3.3.12.6
  6. NFPA 221, Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls, 2006 Edition, section 4.6
  7. NFPA 221, Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls, 2006 Edition, section 4.2
  8. NFPA 221, Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls, 2006 Edition, section 4.9
  9. NFPA 221, Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls, 2006 Edition, section 4.8.3

Related Research Articles

<span class="mw-page-title-main">Wall</span> Vertical structure, usually solid, that defines and sometimes protects an area

A wall is a structure and a surface that defines an area; carries a load; provides security, shelter, or soundproofing; or, is decorative. There are many kinds of walls, including:

<span class="mw-page-title-main">National Electrical Code</span> Electrical wiring standard

The National Electrical Code (NEC), or NFPA 70, is a regionally adoptable standard for the safe installation of electrical wiring and equipment in the United States. It is part of the National Fire Code series published by the National Fire Protection Association (NFPA), a private trade association. Despite the use of the term "national", it is not a Federal law. It is typically adopted by states and municipalities in an effort to standardize their enforcement of safe electrical practices. In some cases, the NEC is amended, altered and may even be rejected in lieu of regional regulations as voted on by local governing bodies.

<span class="mw-page-title-main">Bulkhead (partition)</span> Vertical partition inside a ship

A bulkhead is an upright wall within the hull of a ship, within the fuselage of an airplane, or a car. Other kinds of partition elements within a ship are decks and deckheads.

<span class="mw-page-title-main">Electrical wiring</span> Electrical installation of cabling

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

The publication Life Safety Code, known as NFPA 101, is a consensus standard widely adopted in the United States. It is administered, trademarked, copyrighted, and published by the National Fire Protection Association and, like many NFPA documents, is systematically revised on a three-year cycle.

<span class="mw-page-title-main">Fire door</span> Fire resistant door

A fire door is a door with a fire-resistance rating used as part of a passive fire protection system to reduce the spread of fire and smoke between separate compartments of a structure and to enable safe egress from a building or structure or ship. In North American building codes, it, along with fire dampers, is often referred to as a closure, which can be derated compared against the fire separation that contains it, provided that this barrier is not a firewall or an occupancy separation. In Europe national standards for fire doors have been harmonised with the introduction of the new standard EN 16034, which refers to fire doors as fire-resisting door sets. Starting September 2016, a common CE marking procedure was available abolishing trade barriers within the European Union for these types of products. In the UK, it is Part B of the Building Regulations that sets out the minimum requirements for the fire protection that must be implemented in all dwellings this includes the use of fire doors. All fire doors must be installed with the appropriate fire resistant fittings, such as the frame and door hardware, for it to fully comply with any fire regulations.

<span class="mw-page-title-main">Fireproofing</span> Rendering something (structures, materials, etc.) resistant to fire, or incombustible

Fireproofing is rendering something resistant to fire, or incombustible; or material for use in making anything fire-proof. It is a passive fire protection measure. "Fireproof" or "fireproofing" can be used as a noun, verb or adjective; it may be hyphenated ("fire-proof").

Fire protection is the study and practice of mitigating the unwanted effects of potentially destructive fires. It involves the study of the behaviour, compartmentalisation, suppression and investigation of fire and its related emergencies, as well as the research and development, production, testing and application of mitigating systems. In structures, be they land-based, offshore or even ships, the owners and operators are responsible to maintain their facilities in accordance with a design-basis that is rooted in laws, including the local building code and fire code, which are enforced by the authority having jurisdiction.

A firestop or fire-stopping is a form of passive fire protection that is used to seal around openings and between joints in a fire-resistance-rated wall or floor assembly. Firestops are designed to maintain the fire-resistance rating of a wall or floor assembly intended to impede the spread of fire and smoke.

<span class="mw-page-title-main">Passive fire protection</span> Component or system to passively prevent the spread of fire

Passive fire protection (PFP) is components or systems of a building or structure that slows or impedes the spread of the effects of fire or smoke without system activation, and usually without movement. Examples of passive systems include floor-ceilings and roofs, fire doors, windows, and wall assemblies, fire-resistant coatings, and other fire and smoke control assemblies. Passive fire protection systems can include active components such as fire dampers.

Within the context of building construction and building codes, occupancy is the use of a building for the shelter or support of persons, animals or property. A closely related meaning is the number of units in such a building that are rented, leased, or otherwise in use. Lack of occupancy, in this sense, is known as vacancy.

<span class="mw-page-title-main">QuietRock</span>

QuietRock is a brand of constrained-layer damped gypsum panels manufactured in Newark, California, by PABCO Gypsum. QuietRock was developed in 2003 by Kevin Surace and Brandon D. Tinianov, the first sound-reducing gypsum wallboard panel for use in the building construction industry. QuietRock panels are engineered to increase sound transmission loss (STL) performance and, consequently, the Sound Transmission Class (STC) rating for building partitions using sound and vibration theory.

A fire-resistance rating typically means the duration for which a passive fire protection system can withstand a standard fire resistance test. This can be quantified simply as a measure of time, or it may entail other criteria, involving evidence of functionality or fitness for purpose.

<span class="mw-page-title-main">Fire test</span>

A fire test is a means of determining whether fire protection products meet minimum performance criteria as set out in a building code or other applicable legislation. Successful tests in laboratories holding national accreditation for testing and certification result in the issuance of a certification listing.

Heat and smoke vents are installed in buildings as an active fire protection measure. They are openings in the roof which are intended to vent the heat and smoke developed by a fire inside the building by the action of buoyancy, such that they are known as "gravity vents".

Flame spread, or surface burning characteristics rating, is a ranking derived by laboratory standard test methodology of a material's propensity to burn rapidly and spread flames. There are several standardized methods of determining flame spread,

<span class="mw-page-title-main">Fire damper</span>

Fire dampers are passive fire protection products used in heating, ventilation, and air conditioning (HVAC) ducts to prevent and isolate the spread of fire inside the ductwork through fire-resistance rated walls and floors. Fire/smoke dampers are similar to fire dampers in fire resistance rating, and also prevent the spread of smoke inside the ducts. When a rise in temperature occurs, the fire damper closes, usually activated by a thermal element which melts at temperatures higher than ambient but low enough to indicate the presence of a fire, allowing springs to close the damper blades. Fire dampers can also close following receipt of an electrical signal from a fire alarm system utilising detectors remote from the damper, indicating the sensing of heat or smoke in the building occupied spaces or in the HVAC duct system.

<span class="mw-page-title-main">Gypsum block</span>

Gypsum block is a massive lightweight building material composed of solid gypsum, for building and erecting lightweight, fire-resistant, non-load bearing interior walls, partition walls, cavity walls, skin walls, and pillar casing indoors. Gypsum blocks are composed of gypsum, plaster, water and in some cases additives like vegetable or wood fiber for greater strength. Partition walls, made from gypsum blocks, require no sub-structure for erection and gypsum adhesive is used as bonding agent, not standard mortar. Because of this fundamental difference, gypsum blocks shouldn't be confused with the thinner plasterboard used for paneling stud walls.

<span class="mw-page-title-main">Motor control center</span> Assembly to control a series of electric motors from one location

A motor control center (MCC) is an assembly to control some or all electric motors in a central location. It consists of multiple enclosed sections having a common power bus and with each section containing a combination starter, which in turn consists of motor starter, fuses or circuit breaker, and power disconnect. A motor control center can also include push buttons, indicator lights, variable-frequency drives, programmable logic controllers, and metering equipment. It may be combined with the electrical service entrance for the building.

<span class="mw-page-title-main">High-voltage transformer fire barriers</span>

High-voltage transformer fire barriers, also known as transformer firewalls, transformer ballistic firewalls, or transformer blast walls, are outdoor countermeasures against a fire or exposion involving a single transformer from damaging adjacent transformers. These barriers compartmentalize transformer fires and explosions involving combustible transformer oil.