Focal plane tomography

Last updated
Focal plane tomography
Panoramicfilm.JPG
An orthopantomograph, which uses focal plane tomography.
Purposetomography imaging a single plane/slice

In radiography, focal plane tomography [1] is tomography (imaging a single plane, or slice, of an object) by simultaneously moving the X-ray generator and X-ray detector so as to keep a consistent exposure of only the plane of interest during image acquisition. This was the main method of obtaining tomographs in medical imaging until the late-1970s. It has since been largely replaced by more advanced imaging techniques such as CT and MRI. It remains in use today in a few specialized applications, such as for acquiring orthopantomographs of the jaw in dental radiography.

Contents

Focal plane tomography’s development began in the 1930s as a means of reducing the problem of superimposition of structures which is inherent to projectional radiography. [2] It was invented in parallel by, among others, by the French physician Bocage, the Italian radiologist Alessandro Vallebona and the Dutch radiologist Bernard George Ziedses des Plantes. [3]

Technique

Focal plane tomography generally uses mechanical movement of an X-ray source and film in unison to generate a tomogram using the principles of projective geometry. [4] Synchronizing the movement of the radiation source and detector which are situated in the opposite direction from each other causes structures which are not in the focal plane being studied to blur out.

Limitations

The blurring provided by focal plane tomography is only marginally effective, since it only occurs in the X plane. Moreover, since focal plane tomography uses plain X-rays, it is not particularly effective at resolving soft tissues.

The increased availability and power of computers in the 1960s and 70s gave rise to new imaging techniques such as CT and MRI which use computational (in addition to or in lieu of mechanical) methods to acquire and process tomographic image data, and which do not suffer from the limitations of focal plane tomography.

Variants

Initially focal plane tomography used simple linear movements. The technique advanced through the mid-twentieth century however, steadily producing sharper images, and with a greater ability to vary the thickness of the cross-section being examined. [4] This was achieved through the introduction of more complex, pluridirectional devices that can move in more than one plane and perform more effective blurring.

Linear tomography

An illustration of the source/detector motion involved in linear tomography, with in-focus objects in the slice plane (red and purple) and blurred objects above and below (orange and green) Focal plane tomography.png
An illustration of the source/detector motion involved in linear tomography, with in-focus objects in the slice plane (red and purple) and blurred objects above and below (orange and green)

This is the most basic form of conventional tomography. The X-ray tube moved from point "A" to point "B" above the patient, while the detector (such as cassette holder or "bucky") moves simultaneously under the patient from point "B" to point "A". [5] The fulcrum, or pivot point, is set to the area of interest. In this manner, the points above and below the focal plane are blurred out, just as the background is blurred when panning a camera during exposure. Rarely used, and has largely been replaced by computed tomography (CT).

Poly tomography

External video
Nuvola apps kaboodle.svg Polytome Myelogram Study, 1969 (YouTube) – LA Foundation of Otology film depicting a Polytome being used in a myelography exam to diagnose an acoustic neuroma tumor. Nowadays, this type of tumor would be evaluated using a contrast-enhanced MRI scan.

This was achieved using a more advanced X-ray apparatus that allows for more sophisticated and continuous movements of the X-ray tube and film. With this technique, a number of complex synchronous geometrical movements could be programmed, such as hypocycloidic, circular, figure 8, and elliptical. Philips Medical Systems for example produced one such device called the 'Polytome'. [4] This pluridirectional unit was still in use into the 1990s, as its resulting images for small or difficult physiology, such as the inner ear, were still difficult to image with CTs at that time. As the resolution of CT scanners got better, this procedure was taken over by CT. [6]

Zonography

This is a variant of linear tomography, where a limited arc of movement is used, resulting in less blurring than linear tomography. [7] It is still used in some centres for visualising the kidney during an intravenous urogram (IVU), [8] though it too is being supplanted by CT. [9] [10]

Panoramic radiograph

Panoramic radiography is the only common tomographic examination still in use. This makes use of a complex movement to allow the radiographic examination of the mandible, as if it were a flat bone. [11] It is commonly performed in dental practices and is often referred to as a "Panorex", though this is a trademark of a specific company and not a generic term.

See also

Related Research Articles

<span class="mw-page-title-main">CT scan</span> Medical imaging procedure using X-rays to produce cross-sectional images

A computed tomography scan is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists.

<span class="mw-page-title-main">Radiography</span> Imaging technique using ionizing and non-ionizing radiation

Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical radiography and industrial radiography. Similar techniques are used in airport security. To create an image in conventional radiography, a beam of X-rays is produced by an X-ray generator and is projected toward the object. A certain amount of the X-rays or other radiation is absorbed by the object, dependent on the object's density and structural composition. The X-rays that pass through the object are captured behind the object by a detector. The generation of flat two dimensional images by this technique is called projectional radiography. In computed tomography an X-ray source and its associated detectors rotate around the subject which itself moves through the conical X-ray beam produced. Any given point within the subject is crossed from many directions by many different beams at different times. Information regarding attenuation of these beams is collated and subjected to computation to generate two dimensional images in three planes which can be further processed to produce a three dimensional image.

<span class="mw-page-title-main">Radiology</span> Branch of Medicine

Radiology is the medical discipline that uses medical imaging to diagnose diseases and guide their treatment, within the bodies of humans and other animals. It began with radiography, but today it includes all imaging modalities, including those that use no electromagnetic radiation, as well as others that do, such as computed tomography (CT), fluoroscopy, and nuclear medicine including positron emission tomography (PET). Interventional radiology is the performance of usually minimally invasive medical procedures with the guidance of imaging technologies such as those mentioned above.

<span class="mw-page-title-main">Medical imaging</span> Technique and process of creating visual representations of the interior of a body

Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging.

<span class="mw-page-title-main">Tomography</span> Imaging by sections or sectioning using a penetrative wave

Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram.

<span class="mw-page-title-main">Fluoroscopy</span> Production of an image when X-rays strike a fluorescent screen

Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a surgeon to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched. This is useful for both diagnosis and therapy and occurs in general radiology, interventional radiology, and image-guided surgery.

<span class="mw-page-title-main">Scintigraphy</span> Diagnostic imaging test in nuclear medicine

Scintigraphy, also known as a gamma scan, is a diagnostic test in nuclear medicine, where radioisotopes attached to drugs that travel to a specific organ or tissue (radiopharmaceuticals) are taken internally and the emitted gamma radiation is captured by external detectors to form two-dimensional images in a similar process to the capture of x-ray images. In contrast, SPECT and positron emission tomography (PET) form 3-dimensional images and are therefore classified as separate techniques from scintigraphy, although they also use gamma cameras to detect internal radiation. Scintigraphy is unlike a diagnostic X-ray where external radiation is passed through the body to form an image.

<span class="mw-page-title-main">Digital subtraction angiography</span> Method for delineating blood vessels using contrast medium

Digital subtraction angiography (DSA) is a fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. Images are produced using contrast medium by subtracting a "pre-contrast image" or mask from subsequent images, once the contrast medium has been introduced into a structure. Hence the term "digital subtraction angiography. Subtraction angiography was first described in 1935 and in English sources in 1962 as a manual technique. Digital technology made DSA practical starting in the 1970s.

Pyelogram is a form of imaging of the renal pelvis and ureter.

<span class="mw-page-title-main">CT pulmonary angiogram</span>

A CT pulmonary angiogram (CTPA) is a medical diagnostic test that employs computed tomography (CT) angiography to obtain an image of the pulmonary arteries. Its main use is to diagnose pulmonary embolism (PE). It is a preferred choice of imaging in the diagnosis of PE due to its minimally invasive nature for the patient, whose only requirement for the scan is an intravenous line.

<span class="mw-page-title-main">Projectional radiography</span> Formation of 2D images using X-rays

Projectional radiography, also known as conventional radiography, is a form of radiography and medical imaging that produces two-dimensional images by X-ray radiation. The image acquisition is generally performed by radiographers, and the images are often examined by radiologists. Both the procedure and any resultant images are often simply called 'X-ray'. Plain radiography or roentgenography generally refers to projectional radiography. Plain radiography can also refer to radiography without a radiocontrast agent or radiography that generates single static images, as contrasted to fluoroscopy, which are technically also projectional.

<span class="mw-page-title-main">Tomosynthesis</span>

Tomosynthesis, also digital tomosynthesis (DTS), is a method for performing high-resolution limited-angle tomography at radiation dose levels comparable with projectional radiography. It has been studied for a variety of clinical applications, including vascular imaging, dental imaging, orthopedic imaging, mammographic imaging, musculoskeletal imaging, and chest imaging.

<span class="mw-page-title-main">Automatic exposure control</span>

Automatic Exposure Control (AEC) is an X-ray exposure termination device. A medical radiographic exposure is always initiated by a human operator but an AEC detector system may be used to terminate the exposure when a predetermined amount of radiation has been received. The intention of AEC is to provide consistent x-ray image exposure, whether to film, a digital detector or a CT scanner. AEC systems may also automatically set exposure factors such as the X-ray tube current and voltage in a CT.

<span class="mw-page-title-main">Industrial computed tomography</span> Computer-aided tomographic process

Industrial computed tomography (CT) scanning is any computer-aided tomographic process, usually X-ray computed tomography, that uses irradiation to produce three-dimensional internal and external representations of a scanned object. Industrial CT scanning has been used in many areas of industry for internal inspection of components. Some of the key uses for industrial CT scanning have been flaw detection, failure analysis, metrology, assembly analysis and reverse engineering applications. Just as in medical imaging, industrial imaging includes both nontomographic radiography and computed tomographic radiography.

<span class="mw-page-title-main">Cone beam computed tomography</span> Medical imaging technique

Cone beam computed tomography is a medical imaging technique consisting of X-ray computed tomography where the X-rays are divergent, forming a cone.

<span class="mw-page-title-main">Contrast CT</span>

Contrast CT, or contrast enhanced computed tomography (CECT), is X-ray computed tomography (CT) using radiocontrast. Radiocontrasts for X-ray CT are generally iodine-based types. This is useful to highlight structures such as blood vessels that otherwise would be difficult to delineate from their surroundings. Using contrast material can also help to obtain functional information about tissues. Often, images are taken both with and without radiocontrast. CT images are called precontrast or native-phase images before any radiocontrast has been administrated, and postcontrast after radiocontrast administration.

<span class="mw-page-title-main">Operation of computed tomography</span>

X-ray computed tomography operates by using an X-ray generator that rotates around the object; X-ray detectors are positioned on the opposite side of the circle from the X-ray source.

<span class="mw-page-title-main">History of computed tomography</span> History of CT scanning technology

The history of X-ray computed tomography dates back to at least 1917 with the mathematical theory of the Radon transform In October 1963, William H. Oldendorf received a U.S. patent for a "radiant energy apparatus for investigating selected areas of interior objects obscured by dense material". The first clinical CT scan was performed in 1971 using a scanner invented by Sir Godfrey Hounsfield.

Ronald Marc Summers is an American radiologist and senior investigator at the Diagnostic Radiology Department at the NIH Clinical Center in Bethesda, Maryland. He is chief of the Clinical Image Processing Service and directs the Imaging Biomarkers and Computer-Aided Diagnosis (CAD) Laboratory. A researcher in the field of radiology and computer-aided diagnosis, he has co-authored over 500 journal articles and conference proceedings papers and is a coinventor on 12 patents. His lab has conducted research applying artificial intelligence and deep learning to radiology.

Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Dual-energy imaging, i.e. imaging at two energy levels, is a special case of spectral imaging and is still the most widely used terminology, but the terms "spectral imaging" and "spectral CT" have been coined to acknowledge the fact that photon-counting detectors have the potential for measurements at a larger number of energy levels.

References

  1. Pickens, D. R.; Price, R. R.; Patton, J. A.; Erickson, J. J.; Rollo, F. D.; Brill, A. B. (1980). "Focal-Plane Tomography Image Reconstruction". IEEE Transactions on Nuclear Science. 27 (1): 489–492. Bibcode:1980ITNS...27..489P. doi:10.1109/TNS.1980.4330874. ISSN   0018-9499. S2CID   30852566.
  2. Kevles, Bettyann (1997). Naked to the Bone: Medical Imaging in the Twentieth Century . Rutgers University Press. p.  108. ISBN   9780813523583.
  3. Van Gijn, Jan; Gijselhart, Joost P. (2010-06-23). "Ziedses des Plantes: uitvinder van planigrafie en subtractie" (PDF). Nederlands Tijdschrift voor Geneeskunde (in Dutch).
  4. 1 2 3 Littleton, J.T. "Conventional Tomography". A History of the Radiological Sciences (PDF). American Roentgen Ray Society . Retrieved 11 January 2014.
  5. Allisy-Roberts, Penelope; Williams, Jerry R. (2007). Farr's Physics for Medical Imaging. Elsevier Health Sciences. p. 76. ISBN   978-0702028441.
  6. Lane, John I.; Lindell, E. Paul; Witte, Robert J.; DeLone, David R.; Driscoll, Colin L. W. (January 2006). "Middle and Inner Ear: Improved Depiction with Multiplanar Reconstruction of Volumetric CT Data". RadioGraphics. 26 (1): 115–124. doi:10.1148/rg.261055703. PMID   16418247.
  7. Ettinger, Alice; Fainsinger, Maurice H. (July 1966). "Zonography in Daily Radiological Practice". Radiology. 87 (1): 82–86. doi:10.1148/87.1.82. PMID   5940479.
  8. Daniels, S.J.; Brennan, P.C. (May 1996). "A comparison of tomography and zonography during intravenous urography". Radiography. 2 (2): 99–109. doi:10.1016/S1078-8174(96)90002-4.
  9. Whitfield, Ahn; Whitfield, HN (January 2006). "Is There a Role for the Intravenous Urogram in the 21st Century?". Annals of the Royal College of Surgeons of England. 88 (1): 62–65. doi:10.1308/003588406X83168. PMC   1963625 . PMID   16460641.
  10. Whitley, A. Stewart; Jefferson, Gail; Holmes, Ken; Sloane, Charles; Anderson, Craig; Hoadley, Graham (2015-07-28). Clark's Positioning in Radiography 13E. CRC Press. p. 526. ISBN   9781444165050.
  11. Ghom, Anil (2008). Textbook of Oral Radiology (1st ed.). Elsevier India. p. 460. ISBN   9788131211489.