Four-wave mixing

Last updated

Four-wave mixing (FWM) is an intermodulation phenomenon in nonlinear optics, whereby interactions between two or three wavelengths produce two or one new wavelengths. It is similar to the third-order intercept point in electrical systems. Four-wave mixing can be compared to the intermodulation distortion in standard electrical systems. It is a parametric nonlinear process, in that the energy of the incoming photons is conserved. FWM is a phase-sensitive process, in that the efficiency of the process is strongly affected by phase matching conditions.

Contents

Mechanism

Energy level diagram for a non-degenerate four-wave mixing process. The top energy level could be a real atomic or molecular level (resonant four-wave mixing) or a virtual level, far detuned off-resonance. This diagram describes the four-wave mixing interaction between frequencies f1, f2, f3 and f4. FWM energy levels.png
Energy level diagram for a non-degenerate four-wave mixing process. The top energy level could be a real atomic or molecular level (resonant four-wave mixing) or a virtual level, far detuned off-resonance. This diagram describes the four-wave mixing interaction between frequencies f1, f2, f3 and f4.

When three frequencies (f1, f2, and f3) interact in a nonlinear medium, they give rise to a fourth frequency (f4) which is formed by the scattering of the incident photons, producing the fourth photon.

Given inputs f1, f2, and f3, the nonlinear system will produce

From calculations with the three input signals, it is found that 12 interfering frequencies are produced, three of which lie on one of the original incoming frequencies. Note that these three frequencies which lie at the original incoming frequencies are typically attributed to self-phase modulation and cross-phase modulation, and are naturally phase-matched unlike FWM.

Sum- and difference-frequency generation

Two common forms of four-wave mixing are dubbed sum-frequency generation and difference-frequency generation. In sum-frequency generation three fields are input and the output is a new high frequency field at the sum of the three input frequencies. In difference-frequency generation, the typical output is the sum of two minus the third.

A condition for efficient generation of FWM is phase matching: the associated k-vectors of the four components must add to zero when they are plane waves. This becomes significant since sum- and difference-frequency generation are often enhanced when resonance in the mixing media is exploited. In many configurations the sum of the first two photons will be tuned close to a resonant state. [1] However, close to resonances the index of refraction changes rapidly and makes addition four co-linear k-vectors fail to add exactly to zero—thus long mixing path lengths are not always possible as the four component lose phase lock. Consequently, beams are often focused both for intensity but also to shorten the mixing zone.

In gaseous media an often overlooked complication is that light beams are rarely plane waves but are often focused for extra intensity, this can add an addition pi-phase shift to each k-vector in the phase matching condition. [2] [3] It is often very hard to satisfy this in the sum-frequency configuration but it is more easily satisfied in the difference-frequency configuration (where the pi phase shifts cancel out). [1] As a result, difference-frequency is usually more broadly tunable and easier to set up than sum-frequency generation, making it preferable as a light source even though it's less quantum efficient than sum-frequency generation.

The special case of sum-frequency generation where all the input photons have the same frequency (and wavelength) is Third-Harmonic Generation (THG).

Degenerate four-wave mixing [4]

Four-wave mixing is also present if only two components interact. In this case the term

couples three components, thus generating so-called degenerate four-wave mixing, showing identical properties to the case of three interacting waves.

Adverse effects of FWM in fiber-optic communications

FWM is a fiber-optic characteristic that affects wavelength-division multiplexing (WDM) systems, where multiple optical wavelengths are spaced at equal intervals or channel spacing. The effects of FWM are pronounced with decreased channel spacing of wavelengths (such as in dense WDM systems) and at high signal power levels. High chromatic dispersion decreases FWM effects, as the signals lose coherence, or in other words, the phase mismatch between the signals increases. The interference FWM caused in WDM systems is known as interchannel crosstalk. FWM can be mitigated by using uneven channel spacing or fiber that increases dispersion. For the special case where the three frequencies are close to degenerate, then optical separation of the difference frequency can be technically challenging.

Applications

FWM finds applications in optical phase conjugation, parametric amplification, supercontinuum generation, Vacuum Ultraviolet light generation and in microresonator based frequency comb generation. Parametric amplifiers and oscillators based on four-wave mixing use the third order nonlinearity, as opposed to most typical parametric oscillators which use the second-order nonlinearity. Apart from these classical applications, four-wave mixing has shown promise in the quantum optical regime for generating single photons, [5] correlated photon pairs, [6] [7] squeezed light [8] [9] and entangled photons. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

<span class="mw-page-title-main">Optical amplifier</span> Device that amplifies an optical signal

An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from the cavity is suppressed. Optical amplifiers are important in optical communication and laser physics. They are used as optical repeaters in the long distance fiber-optic cables which carry much of the world's telecommunication links.

<span class="mw-page-title-main">Optical ring resonators</span>

An optical ring resonator is a set of waveguides in which at least one is a closed loop coupled to some sort of light input and output. The concepts behind optical ring resonators are the same as those behind whispering galleries except that they use light and obey the properties behind constructive interference and total internal reflection. When light of the resonant wavelength is passed through the loop from the input waveguide, the light builds up in intensity over multiple round-trips owing to constructive interference and is output to the output bus waveguide which serves as a detector waveguide. Because only a select few wavelengths will be at resonance within the loop, the optical ring resonator functions as a filter. Additionally, as implied earlier, two or more ring waveguides can be coupled to each other to form an add/drop optical filter.

<span class="mw-page-title-main">Spontaneous parametric down-conversion</span> Optical process

Spontaneous parametric down-conversion is a nonlinear instant optical process that converts one photon of higher energy, into a pair of photons of lower energy, in accordance with the law of conservation of energy and law of conservation of momentum. It is an important process in quantum optics, for the generation of entangled photon pairs, and of single photons.

<span class="mw-page-title-main">Optical parametric amplifier</span>

An optical parametric amplifier, abbreviated OPA, is a laser light source that emits light of variable wavelengths by an optical parametric amplification process. It is essentially the same as an optical parametric oscillator, but without the optical cavity.

<span class="mw-page-title-main">Optical microcavity</span>

An optical microcavity or microresonator is a structure formed by reflecting faces on the two sides of a spacer layer or optical medium, or by wrapping a waveguide in a circular fashion to form a ring. The former type is a standing wave cavity, and the latter is a traveling wave cavity. The name microcavity stems from the fact that it is often only a few micrometers thick, the spacer layer sometimes even in the nanometer range. As with common lasers, this forms an optical cavity or optical resonator, allowing a standing wave to form inside the spacer layer or a traveling wave that goes around in the ring.

<span class="mw-page-title-main">Optical parametric oscillator</span>

An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave with frequency into two output waves of lower frequency by means of second-order nonlinear optical interaction. The sum of the output waves' frequencies is equal to the input wave frequency: . For historical reasons, the two output waves are called "signal" and "idler", where the output wave with higher frequency is the "signal". A special case is the degenerate OPO, when the output frequency is one-half the pump frequency, , which can result in half-harmonic generation when signal and idler have the same polarization.

Self-phase modulation (SPM) is a nonlinear optical effect of light–matter interaction. An ultrashort pulse of light, when travelling in a medium, will induce a varying refractive index of the medium due to the optical Kerr effect. This variation in refractive index will produce a phase shift in the pulse, leading to a change of the pulse's frequency spectrum.

This is a list of acronyms and other initialisms used in laser physics and laser applications.

Cross-phase modulation (XPM) is a nonlinear optical effect where one wavelength of light can affect the phase of another wavelength of light through the optical Kerr effect. When the optical power from a wavelength impacts the refractive index, the impact of the new refractive index on another wavelength is known as XPM.

Sum-frequency generation (SFG) is a second order nonlinear optical process based on the mixing of two input photons at frequencies and to generate a third photon at frequency . As with any optical phenomenon in nonlinear optics, this can only occur under conditions where: the light is interacting with matter, that lacks centrosymmetry ; the light has a very high intensity . Sum-frequency generation is a "parametric process", meaning that the photons satisfy energy conservation, leaving the matter unchanged:

<span class="mw-page-title-main">Frequency comb</span> Laser source with equal intervals of spectral energies

A frequency comb or spectral comb is a spectrum made of discrete and regularly spaced spectral lines. In optics, a frequency comb can be generated by certain laser sources.

<span class="mw-page-title-main">Silicon photonics</span> Photonic systems which use silicon as an optical medium

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what is known as silicon on insulator (SOI).

<span class="mw-page-title-main">Supercontinuum</span>

In optics, a supercontinuum is formed when a collection of nonlinear processes act together upon a pump beam in order to cause severe spectral broadening of the original pump beam, for example using a microstructured optical fiber. The result is a smooth spectral continuum. There is no consensus on how much broadening constitutes a supercontinuum; however researchers have published work claiming as little as 60 nm of broadening as a supercontinuum. There is also no agreement on the spectral flatness required to define the bandwidth of the source, with authors using anything from 5 dB to 40 dB or more. In addition the term supercontinuum itself did not gain widespread acceptance until this century, with many authors using alternative phrases to describe their continua during the 1970s, 1980s and 1990s.

<span class="mw-page-title-main">Harmonic generation</span> Nonlinear optical process

Harmonic generation is a nonlinear optical process in which photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with times the energy of the initial photons.

The Mamyshev 2R regenerator is an all-optical regenerator used in optical communications. In 1998, Pavel V. Mamyshev of Bell Labs proposed and patented the use of the self-phase modulation (SPM) for single channel optical pulse reshaping and re-amplification. More recent applications target the field of ultrashort high peak-power pulse generation.

A parametric process is an optical process in which light interacts with matter in such a way as to leave the quantum state of the material unchanged. As a direct consequence of this there can be no net transfer of energy, momentum, or angular momentum between the optical field and the physical system. In contrast a non-parametric process is a process in which any part of the quantum state of the system changes.

<span class="mw-page-title-main">Optical rogue waves</span>

Optical rogue waves are rare pulses of light analogous to rogue or freak ocean waves. The term optical rogue waves was coined to describe rare pulses of broadband light arising during the process of supercontinuum generation—a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input waveform—in nonlinear optical fiber. In this context, optical rogue waves are characterized by an anomalous surplus in energy at particular wavelengths or an unexpected peak power. These anomalous events have been shown to follow heavy-tailed statistics, also known as L-shaped statistics, fat-tailed statistics, or extreme-value statistics. These probability distributions are characterized by long tails: large outliers occur rarely, yet much more frequently than expected from Gaussian statistics and intuition. Such distributions also describe the probabilities of freak ocean waves and various phenomena in both the man-made and natural worlds. Despite their infrequency, rare events wield significant influence in many systems. Aside from the statistical similarities, light waves traveling in optical fibers are known to obey the similar mathematics as water waves traveling in the open ocean, supporting the analogy between oceanic rogue waves and their optical counterparts. More generally, research has exposed a number of different analogies between extreme events in optics and hydrodynamic systems. A key practical difference is that most optical experiments can be done with a table-top apparatus, offer a high degree of experimental control, and allow data to be acquired extremely rapidly. Consequently, optical rogue waves are attractive for experimental and theoretical research and have become a highly studied phenomenon. The particulars of the analogy between extreme waves in optics and hydrodynamics may vary depending on the context, but the existence of rare events and extreme statistics in wave-related phenomena are common ground.

Half-harmonic generation is a nonlinear optical process in which photons "split" to generate pairs of new photons with half the energy, therefore half the frequency and twice the wavelength of the initial photons. The half-harmonic generation process is the inverse of second-harmonic generation and can occur in optical parametric oscillators at degeneracy, and is a phase- and frequency-locked down-conversion process.

The numerical models of lasers and the most of nonlinear optical systems stem from Maxwell–Bloch equations (MBE). This full set of Partial Differential Equations includes Maxwell equations for electromagnetic field and semiclassical equations of the two-level atoms. For this reason the simplified theoretical approaches were developed for numerical simulation of laser beams formation and their propagation since the early years of laser era. The Slowly varying envelope approximation of MBE follows from the standard nonlinear wave equation with nonlinear polarization as a source:

References

  1. 1 2 Strauss, CEM; Funk, DJ (1991). "Broadly tunable difference-frequency generation of VUV using two-photon resonances in H2 and Kr". Optics Letters. 16 (15): 1192–4. Bibcode:1991OptL...16.1192S. doi:10.1364/ol.16.001192. PMID   19776917.
  2. Cardoso, GC; Tabosa, JWR (2000). "Four-wave mixing in dressed cold cesium atoms". Optics Communications. 185 (4–6): 353. Bibcode:2000OptCo.185..353C. doi:10.1016/S0030-4018(00)01033-6.
  3. Cardoso, GC; Tabosa, JWR (2002). "Saturated lineshapes and high-order susceptibilities of cold cesium atoms observed via a transferred population grating". Optics Communications. 210 (3–6): 271. Bibcode:2002OptCo.210..271C. doi:10.1016/S0030-4018(02)01820-5.
  4. Cvijetic, Djordjevic, Milorad, Ivan B. (2013). Advanced Optical Communication Systems and Networks. Artech House. pp. 314 to 217. ISBN   978-1-60807-555-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. Fan, Bixuan; Duan, Zhenglu; Zhou, Lu; Yuan, Chunhua; Ou, Z. Y.; Zhang, Weiping (2009-12-03). "Generation of a single-photon source via a four-wave mixing process in a cavity". Physical Review A. 80 (6): 063809. Bibcode:2009PhRvA..80f3809F. doi:10.1103/PhysRevA.80.063809.
  6. Sharping, Jay E.; Fiorentino, Marco; Coker, Ayodeji; Kumar, Prem; Windeler, Robert S. (2001-07-15). "Four-wave mixing in microstructure fiber". Optics Letters. 26 (14): 1048–1050. Bibcode:2001OptL...26.1048S. doi:10.1364/OL.26.001048. ISSN   1539-4794. PMID   18049515.
  7. Wang, L. J.; Hong, C. K.; Friberg, S. R. (2001). "Generation of correlated photons via four-wave mixing in optical fibres". Journal of Optics B: Quantum and Semiclassical Optics. 3 (5): 346. Bibcode:2001JOptB...3..346W. doi:10.1088/1464-4266/3/5/311. ISSN   1464-4266.
  8. Slusher, R. E.; Yurke, B.; Grangier, P.; LaPorta, A.; Walls, D. F.; Reid, M. (1987-10-01). "Squeezed-light generation by four-wave mixing near an atomic resonance". JOSA B. 4 (10): 1453–1464. Bibcode:1987JOSAB...4.1453S. doi:10.1364/JOSAB.4.001453. ISSN   1520-8540.
  9. Dutt, Avik; Luke, Kevin; Manipatruni, Sasikanth; Gaeta, Alexander L.; Nussenzveig, Paulo; Lipson, Michal (2015-04-13). "On-Chip Optical Squeezing". Physical Review Applied. 3 (4): 044005. arXiv: 1309.6371 . Bibcode:2015PhRvP...3d4005D. doi:10.1103/PhysRevApplied.3.044005. S2CID   16013174.
  10. Takesue, Hiroki; Inoue, Kyo (2004-09-30). "Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop". Physical Review A. 70 (3): 031802. arXiv: quant-ph/0408032 . Bibcode:2004PhRvA..70c1802T. doi:10.1103/PhysRevA.70.031802. S2CID   18095922.