Gravity Gradient Technology Satellite

Last updated
Gravity Gradient Test Satellite (GGTS)
Gravity Gradient Technology Satellite (GGTS).jpg
Gravity Gradient Technology Satellite (GGTS)
Mission type Gravity-gradient stabilization
Operator United States Air Force
COSPAR ID 1966-053A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 2207 [1]
Spacecraft properties
Launch mass47 kilograms (104 lb)
Start of mission
Launch dateJune 16, 1966 (1966-06-16Z) 14:00:01 UTC
Rocket Titan IIIC
Launch site Cape Canaveral LC41
Orbital parameters
Reference system Geocentric
Regime Geosynchronous
Perigee altitude 33,663 kilometers (20,917 mi)
Apogee altitude 33,858 kilometers (21,038 mi)
Inclination 4.2°
Period 1,334.00 minutes [2]
 

The Gravity Gradient Test Satellite was launched by the US Air Force from Cape Canaveral LC41 aboard a Titan IIIC rocket on June 16, 1966, at 14:00:01 UTC. [3] The satellite was launched along with seven IDCSP satellites, with which it shared a bus. In contrast to the solar-powered IDCSP satellites, GGTS was battery powered.

GGTS utilized the 12-kilogram (26 lb) Magnetically Anchored Gravity Systems (MACS), which consisted of two identical subsystem packages, each containing an extensible rod unit and a magnetically anchored spherical viscous damper. The rod units had an extended length of 15.8 meters (52 ft), and their 5-kilogram (11 lb) damper tip weights gave the satellite a symmetric dumbbell configuration. The dampers were produced by General Electric and consisted of two concentric spheres separated by a viscous damping fluid. The internal sphere contained a hollow cylindrical magnet which served to "anchor' the inner sphere to the Earth's magnetic field, stabilizing the satellite over time.

It had been hoped that within 60 days of launch, the satellite would reach a stabilization of ±8° on the x- and y-axis. The results were compromised, as one of the dampers was magnetically contaminated.

A follow-up GGTS mission was lost due to a launch vehicle failure on August 28, 1966. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Mariner program</span> NASA space program from 1962 to 1973

The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System - visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.

<span class="mw-page-title-main">Robotic spacecraft</span> Uncrewed spacecraft, usually under telerobotic control

A robotic spacecraft is an uncrewed spacecraft, usually under telerobotic control. A robotic spacecraft designed to make scientific research measurements is often called a space probe. Many space missions are more suited to telerobotic rather than crewed operation, due to lower cost and lower risk factors. In addition, some planetary destinations such as Venus or the vicinity of Jupiter are too hostile for human survival, given current technology. Outer planets such as Saturn, Uranus, and Neptune are too distant to reach with current crewed spacecraft technology, so telerobotic probes are the only way to explore them.

<span class="mw-page-title-main">Pioneer 2</span> 1958 NASA space probe designed to study the Moon

Pioneer 2 was the last of the three project Able space probes designed to probe lunar and cislunar space. The launch took place at 07:30:21 GMT on 8 November 1958. After Pioneer 1 had failed due to guidance system deficiencies, the guidance system was modified with a Doppler command system to ensure more accurate commands and minimize trajectory errors. Once again, the first and second stage portion of the flight was uneventful, but the third stage of the launch vehicle failed to ignite, making it impossible for Pioneer 2 to achieve orbital velocity. An attempt to fire the vernier engines on the probe was unsuccessful and the spacecraft attained a maximum altitude of 1,550 km (960 mi) before reentering Earth's atmosphere at 28.7° N, 1.9° E over NW Africa. A small amount of data was obtained during the short flight, including evidence that the equatorial region around Earth has higher flux and higher energy radiation than previously considered and that the micrometeorite density is higher around Earth than in space. The reason for the third stage failure was unclear, but it was suspected that the firing command from the second stage, which contained the guidance package for the entire launch vehicle, was never received, possibly due to damage to electrical lines during staging.

<i>Pioneer 5</i> Space probe

Pioneer 5 was a spin-stabilized space probe in the NASA Pioneer program used to investigate interplanetary space between the orbits of Earth and Venus. It was launched on 11 March 1960 from Cape Canaveral Air Force Station Launch Complex 17A at 13:00:00 UTC with an on-orbit dry mass of 43 kilograms (95 lb). It was a 0.66 metres diameter sphere with 1.4 metres span across its four solar panels and achieved a solar orbit of 0.806 × 0.995 AU.

Vanguard 3

Vanguard 3 is a scientific satellite that was launched into Earth orbit by the Vanguard SLV-7 on 18 September 1959, the third successful Vanguard launch out of eleven attempts. Vanguard rocket: Vanguard Satellite Launch Vehicle-7 (SLV-7) was an unused Vanguard TV-4BU rocket, updated to the final production Satellite Launch Vehicle (SLV).

Explorer 32 NASA satellite of the Explorer program

Explorer 32, also known as Atmosphere Explorer-B (AE-B), was a NASA satellite launched by the United States to study the Earth's upper atmosphere. It was launched from Cape Canaveral on a Delta C1 launch vehicle, on 25 May 1966. It was the second of five "Atmosphere Explorer", the first being Explorer 17. Though it was placed in a higher-than-expected orbit by a malfunctioning second stage on its launch vehicle, Explorer 32 returned data for ten months before failing due to a sudden depressurization. The satellite reentered the Earth's atmosphere on 22 February 1985.

Astérix (satellite) First French satellite

Astérix or A-1 is the first French satellite. It was launched on 26 November 1965 by a Diamant A rocket from the CIEES launch site at Hammaguir, Algeria. With Astérix, France became the sixth country to have an artificial satellite and the third country to launch a satellite on its own rocket. Its main purpose was to test the Diamant launcher, though it was also designed to study the ionosphere. Astérix continues to orbit Earth as of 2022 and is expected to remain in orbit for centuries.

<span class="mw-page-title-main">Explorer 49</span> NASA satellite of the Explorer program

Explorer 49 was a NASA 328 kg (723 lb) satellite launched on 10 June 1973, for long wave radio astronomy research. It had four 230 m (750 ft) X-shaped antenna elements, which made it one of the largest spacecraft ever built.

Orbiting Vehicle American satellite family

Orbiting Vehicle or OV, originally designated SATAR, comprised five disparate series of standardized American satellites operated by the US Air Force, launched between 1965 and 1971. Forty seven satellites were built, of which forty three were launched and thirty seven reached orbit. With the exception of the OV3 series and OV4-3, they were launched as secondary payloads, using excess space on other missions. This resulted in extremely low launch costs and short proposal-to-orbit times. Typically, OV satellites carried scientific and/or technological experiments, 184 being successfully orbited through the lifespan of the program.

SECOR was a series of small United States Armed Forces satellites launched in the 1960s for geodesy measurements that precisely determined the locations of points on the Earth's surface, particularly of isolated islands in the Pacific Ocean. This data allowed for improved global mapping and precise positioning of ground stations for other satellites.

Kosmos 23, also known as Omega No.2, was a satellite which was launched by the Soviet Union in 1963. It was an Omega satellite, derived from the Dnepropetrovsk Sputnik series. It was a 347 kilograms (765 lb) spacecraft, which was built by the Yuzhnoye Design Office, and was used to conduct experiments with the use of gyroscopes to control spacecraft, for VNIIEM.

Attitude control is the process of controlling the orientation of an aerospace vehicle with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.

TurkSat-3USat is a Turkish communications nanosatellite developed by the Space Systems Design and Test Laboratory and Radio Frequency Electronics Laboratory of Istanbul Technical University (ITU) in collaboration with the Türksat company along with Turkish Amateur Satellite Technology Organization (TAMSAT). It was launched on 26 April 2013.

The Gravity Gradient Stabilization Experiment (GGSE-1) was a technology satellite launched simultaneously with four other satellites on 11 January 1964 by the U.S. military from Vandenberg Air Force Base aboard a Thor Augmented Delta-Agena D rocket. It demonstrated a new oscillation damping system intended for use in reconnaissance satellites.

FR-1 (satellite) French scientific satellite; the second French satellite

FR-1 was the second French satellite. Planned as the first French satellite, it was launched on 6 December 1965—ten days after the actual first French satellite, Astérix—by an American Scout X-4 rocket from the Western Range at Vandenberg Air Force Base. The scientific satellite studied the composition and structure of the ionosphere, plasmasphere, and magnetosphere by measuring the propagation of very low frequency (VLF) waves and the electron density of plasma in those portions of the Earth's atmosphere. FR-1's VLF receiver operated until 26 August 1968. FR-1 remains in orbit as of November 2020.

<i>Galileo</i> (spacecraft) NASA space probe, which studied the planet Jupiter and its moons (1989–2003)

Galileo was an American robotic space probe that studied the planet Jupiter and its moons, as well as the asteroids Gaspra and Ida. Named after the Italian astronomer Galileo Galilei, it consisted of an orbiter and an entry probe. It was delivered into Earth orbit on October 18, 1989 by Space ShuttleAtlantis. Galileo arrived at Jupiter on December 7, 1995, after gravitational assist flybys of Venus and Earth, and became the first spacecraft to orbit an outer planet.

OV3-1 US Air Force satellite

Orbiting Vehicle 3-1, launched 22 April 1966, was the first satellite in the OV3 series of the United States Air Force's Orbiting Vehicle program. The satellite measured radiation above the Earth, returning useful data for over a year. It is still in orbit as of 1 April 2021.

OV3-3 US Air Force satellite

Orbiting Vehicle 3-3, launched 4 August 1966, was the third satellite to be launched in the OV3 series of the United States Air Force's Orbiting Vehicle program. The satellite measured charged particles in orbit so that their danger to space-based payloads could be assessed. OV3-3 is still in orbit as of 29 July 2021.

OV1-6 US Air Force satellite

Orbiting Vehicle 1-6 was launched via Titan IIIC rocket into orbit 2 November 1966 along with two other satellites in the United States Air Force's Orbiting Vehicle series on the first and only Manned Orbiting Laboratory test flight. The eighth satellite in the OV1 series to be launched, OV1-6 was designed to release a number of inflatable spheres, which would then be used in classified tracking experiments conducted on the ground. It is uncertain whether or not the satellite successfully released any of its spheres. OV1-6 reentered the Earth's atmosphere on 31 December 1966.

OV1-10 US Air Force satellite

Orbiting Vehicle 1-10, launched 11 December 1966 along with OV1-9, was the tenth satellite in the OV1 series of the United States Air Force's Orbiting Vehicle program. Designed to observe atmospheric airglow, X-ray and cosmic radiation, OV1-10 returned significant data on the Sun as well as on geophysical phenomena in Earth's magnetic field. OV1-10 reentered Earth's atmosphere on 30 November 2002.

References

  1. "GGTS 1". NASA Space Science Data Coordinated Archive. Retrieved November 21, 2019.
  2. "GGTS". Astronautix. Archived from the original on December 28, 2016. Retrieved November 22, 2019.
  3. McDowell, Jonathan. "Launch Log". Jonathon's Space Report. Retrieved December 30, 2018.
  4. "GGTS 1,2". Gunter's Space Report. Retrieved 22 Nov 2019.