Gun chronograph

Last updated
Chronographa.jpg
Prochrono2.jpg
A Down Range chronograph with storage and statistical tools.

A ballistic chronograph or gun chronograph is a measuring instrument used to measure the velocity of a projectile in flight, typically fired from a gun or other firearm. The instrument is often useful for tasks such as gauging the utility of a firearm or safety of non-lethal projectiles fired from items such as a paintball gun or BB gun.

Contents

History

Benjamin Robins (1707–1751) invented the ballistic pendulum that measures the momentum of the projectile fired by a gun. Dividing the momentum by the projectile mass gives the velocity. Robbins published his results as New Principles of Gunnery in 1742. [1] [2] The ballistic pendulum could make only one measurement per firing because the device catches the projectile. [3] The gun's accuracy also limited how far down range a measurement could be made. [4]

Alessandro Vittorio Papacino d'Antoni published results in 1765 using a wheel chronometer. This used a horizontal spinning wheel with a vertical paper mounted on the rim. The bullet was fired across the diameter of the wheel so that it pierced the paper on both sides, and the angular difference along with the rotation speed of the wheel was used to compute the bullet velocity. [5]

An early chronograph that measures velocity directly was built in 1804 by Grobert, a colonel in the French Army. This used a rapidly rotating axle with two disks mounted on it about 13 feet apart. The bullet was fired parallel to the axle, and the angular displacement of the holes in the two disks, together with the rotational speed of the axle, yielded the bullet velocity. [6]

Ingalls (1886 , p. 18) describes Bashforth's chronograph that could make many measurements over long distances:

In 1865 the Rev. Francis Bashforth, M. A., who had then been recently appointed Professor of Applied Mathematics to the advanced class of artillery officers at Woolwich, began a series of experiments for determining the resistance of the air to the motion of both spherical and oblong projectiles, which he continued from time to time until 1880. As the instruments then in use for measuring velocities were incapable of giving the times occupied by a shot in passing over a series of successive equal spaces, he began his labors by inventing and constructing a chronograph to accomplish this object, which was tried late in 1865 in Woolwich Marshes, with ten screens, and with perfect success.
The velocity of Ordnance QF 25-pounder shells being measured in the United Kingdom, 1943 Girl Gunners- the work of the Auxiliary Territorial Service at An Experimental Station, Shoeburyness, Essex, England, 1943 D12697.jpg
The velocity of Ordnance QF 25-pounder shells being measured in the United Kingdom, 1943

The Bashforth screens were made with several threads and series connected switches. A projectile passing through a screen would break one or more threads, the broken thread caused a switch to momentarily (about 20 ms) interrupt a current as the switch arm moved from its weighted position to its unweighted position, and the momentary interruption would be recorded on a paper chart. [7]

The first electronic ballistic chronograph was invented by Kiryako ("Jerry") Arvanetakis in the 1950s.[ citation needed ] As consulting engineer under contract by NACA (later NASA), he was asked to find a way to accurately measure the velocity of various projectiles fired at hyper-velocities into a variety of engineered materials in anticipation of crewed space flight. His first design was an open rectangular frame of square aluminum tubing with a screen of fine copper wire at both ends. Breaking the first wire started charging a capacitor, breaking the second wire stopped it. Measuring the accumulated voltage and knowing the rate of charge the elapsed time could be accurately calculated.

Modern chronograph

The modern chronograph consists of two sensing areas framed by rods topped by diffusing screens or artificial lighting above (or below) along with optical sensors that detect the passage of the bullet. The time it takes the bullet to travel the distance between the sensors is measured electronically from which velocity is calculated and displayed.

Advanced ballistic chronographs include a type employing Doppler radar to measure bullets in free flight at various distances; another is a device mounted at the end of a barrel, which uses magnetic field sensors for the measurement of a bullet's velocity as it exits the muzzle. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Rifle</span> Common long range firearm

A rifle is a long-barreled firearm designed for accurate shooting and higher stopping power, with a barrel that has a helical pattern of grooves (rifling) cut into the bore wall. In keeping with their focus on accuracy, rifles are typically designed to be held with both hands and braced firmly against the shooter's shoulder via a buttstock for stability during shooting. Rifles are used extensively in warfare, law enforcement, hunting, shooting sports and crime.

<span class="mw-page-title-main">Pendulum</span> Mechanism for regulating the speed of clocks

A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing.

<span class="mw-page-title-main">Bullet</span> Projectile propelled by a firearm, sling, or air gun

A bullet is a kinetic projectile, a component of firearm ammunition that is shot from a gun barrel. They are made of a variety of materials, such as copper, lead, steel, polymer, rubber and even wax; and are made in various shapes and constructions, including specialized functions such as hunting, target shooting, training, and combat. Bullets are often tapered, making them more aerodynamic. Bullet size is expressed by weight and diameter in both imperial and metric measurement systems. Bullets do not normally contain explosives but strike or damage the intended target by transferring kinetic energy upon impact and penetration.

<span class="mw-page-title-main">Recoil</span> Backward momentum of a gun when it is discharged

Recoil is the rearward thrust generated when a gun is being discharged. In technical terms, the recoil is a result of conservation of momentum, as according to Newton's third law the force required to accelerate something will evoke an equal but opposite reactional force, which means the forward momentum gained by the projectile and exhaust gases (ejectae) will be mathematically balanced out by an equal and opposite momentum exerted back upon the gun.

<span class="mw-page-title-main">Ballistics</span> Science of the motion of projectiles

Ballistics is the field of mechanics concerned with the launching, flight behaviour and impact effects of projectiles, especially ranged weapon munitions such as bullets, unguided bombs, rockets or the like; the science or art of designing and accelerating projectiles so as to achieve a desired performance.

Muzzle velocity is the speed of a projectile with respect to the muzzle at the moment it leaves the end of a gun's barrel. Firearm muzzle velocities range from approximately 120 m/s (390 ft/s) to 370 m/s (1,200 ft/s) in black powder muskets, to more than 1,200 m/s (3,900 ft/s) in modern rifles with high-velocity cartridges such as the .220 Swift and .204 Ruger, all the way to 1,700 m/s (5,600 ft/s) for tank guns firing kinetic energy penetrator ammunition. To simulate orbital debris impacts on spacecraft, NASA launches projectiles through light-gas guns at speeds up to 8,500 m/s (28,000 ft/s). FPS and MPH are the most common American measurements for bullets. Several factors, including the type of firearm, the cartridge, and the barrel length, determine the bullet's muzzle velocity.

Benjamin Robins was a pioneering British scientist, Newtonian mathematician, and military engineer.

<span class="mw-page-title-main">External ballistics</span> Behavior of projectiles in flight

External ballistics or exterior ballistics is the part of ballistics that deals with the behavior of a projectile in flight. The projectile may be powered or un-powered, guided or unguided, spin or fin stabilized, flying through an atmosphere or in the vacuum of space, but most certainly flying under the influence of a gravitational field.

<span class="mw-page-title-main">Gunshot</span> Single discharge of a gun

A gunshot is a single discharge of a gun, typically a man-portable firearm, producing a visible flash, a powerful and loud shockwave and often chemical gunshot residue. The term can also refer to a ballistic wound caused by such a discharge.

Internal ballistics, a subfield of ballistics, is the study of the propulsion of a projectile.

<span class="mw-page-title-main">Body armor</span> Protective clothing; armor worn on the body

Body armor, personal armor, armored suit (armoured) or coat of armor, among others, is protective clothing designed to absorb or deflect physical attacks. Historically used to protect military personnel, today it is also used by various types of police, private security guards, or bodyguards, and occasionally ordinary citizens. Today there are two main types: regular non-plated body armor for moderate to substantial protection, and hard-plate reinforced body armor for maximum protection, such as used by combatants.

<span class="mw-page-title-main">Ballistic coefficient</span> Physical measure of overcoming air resistance

In ballistics, the ballistic coefficient of a body is a measure of its ability to overcome air resistance in flight. It is inversely proportional to the negative acceleration: a high number indicates a low negative acceleration—the drag on the body is small in proportion to its mass. BC can be expressed with the units kilograms per square meter (kg/m2) or pounds per square inch (lb/in2).

<span class="mw-page-title-main">Gun laying</span> Process of aiming an artillery piece or turret

Gun laying is the process of aiming an artillery piece or turret, such as a gun, howitzer, or mortar, on land, in air, or at sea, against surface or aerial targets. It may be laying for direct fire, where the gun is aimed similarly to a rifle, or indirect fire, where firing data is calculated and applied to the sights. The term includes automated aiming using, for example, radar-derived target data and computer-controlled guns.

<span class="mw-page-title-main">.41 Short</span> Revolver cartridge

The .41 Rimfire Cartridge was first introduced by the National Arms Company in 1863 and was also known as the .41 Short and the .41-100. In most designations like this, the second number refers to the black powder load, though in this case it means "41 hundredths of an inch".

<span class="mw-page-title-main">Ballistic pendulum</span> Pendulum used in measuring a bullets momentum

A ballistic pendulum is a device for measuring a bullet's momentum, from which it is possible to calculate the velocity and kinetic energy. Ballistic pendulums have been largely rendered obsolete by modern chronographs, which allow direct measurement of the projectile velocity.

The .408 Cheyenne Tactical is a specialized rimless, bottlenecked, centerfire cartridge for military long-range sniper rifles that was developed by Dr. John D. Taylor and machinist William O. Wordman. The round was designed with a possible military need for a cartridge for anti-personnel, anti-sniper, and anti-materiel roles with a (supersonic) precision range of 2,200 yards. It is offered as a competitor to the most common military NATO long-range service cartridges such as .338 Lapua Magnum and the .50 BMG.

QuickLOAD is an internal ballistics predictor computer program for firearms.

The Aberdeen chronograph was the first portable gun chronograph, an instrument for measuring the muzzle velocity and striking power of a projectile fired by a gun. It was invented in 1918 by Alfred Lee Loomis at the U.S. Army's Aberdeen Proving Ground.

<span class="mw-page-title-main">Inertial navigation system</span> Continuously computed dead reckoning

An inertial navigation system is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.

Francis Bashforth was an English Anglican priest and mathematician, who is known for his use of applied mathematics on ballistics.

References

  1. Ingalls 1886 , p. 17
  2. Robins, Benjamin (1805), New Principles of Gunnery (New ed.), F. Wingrave
  3. Bashforth 1866 , p. 3, "only one observation on each round".
  4. Bashforth 1866 , p. 3, "Beyond 295 feet the gun was not sufficiently accurate".
  5. d'Antoni, Alessandro Vittorio Papacino (1765), Esame Della Polvere, Torino: Nella Stamperia Reale
  6. Prony (1805), "Report of a method of measuring the initial Velocity of Projectiles discharged from Fire-arms, both horizontally and with different Elevations, made to the Physical and Mathematical Class of the National Institute", in Nicholson, William (ed.), A Journal of Natural Philosophy, Chemistry and the Arts, vol. XI, London at page 42
    abridged from Journal des Mines No 92 p. 117, May 1804.
  7. Bashforth 1866 , pp. 12–13
  8. "15 Best Shooting Chronographs". 22 November 2020.

Further reading