Haloacetic acids

Last updated
Examples of haloacetic acids

Haloacetic acids or HAAs are carboxylic acids in which one or more halogen atoms take the place of hydrogen atoms in the methyl group of acetic acid. Those acids have a general chemical formula X 1X2X3 C−CO 2 H , where X is hydrogen or halogen, and at least one X is a halogen. In a monohaloacetic acid (XCH2−CO2H), a single halogen replaces a hydrogen atom: for example, in bromoacetic acid (BrCH2−CO2H). Further substitution of hydrogen atoms with halogens can occur, as in dichloroacetic acid (Cl2CH−CO2H) and trichloroacetic acid (Cl3C−CO2H).

Contents

Haloacetic acids are a common contaminant in treated drinking water, particularly water subjected to chlorination.

Contaminants in treated water

Haloacetic acids (HAAs) are a common undesirable by-product of water treatment by chlorination. Exposure to such disinfection by-products in drinking water, at high levels over many years, has been associated with a number of health outcomes by epidemiological studies. [1]

HAAs can be formed following chlorination, ozonation, or chloramination of water, as chlorine from the water disinfection process can react with organic matter and small amounts of bromide present in water. [2] HAAs are highly chemically stable, and therefore persist in water after formation. [3]

A study published in August 2006 found that total levels of HAAs in drinking water were not affected by storage or boiling, but that filtration was effective in decreasing levels. [4]

HAA5

In the United States, the EPA regulates the five HAAs most commonly found in drinking water, collectively referred to as "HAA5." [2] These are:

The regulation limit for these five acids combined is 60 parts per billion (ppb). [5] The sum of bromodichloroacetic acid, dibromochloroacetic acid and tribromoacetic acid concentrations is known as HAA3. [6]

HAA9

The designation "HAA9" refers to a larger group of HAAs, including all of the acids in HAA5, along with:

The level of these four acids in drinking water is not regulated by the EPA. [7] [8] HAA6 refers to the sum of HAA5 and bromochloroacetic acid concentrations. [6]

Health effects

Haloacetic acids are readily absorbed by the human body after being ingested, and can be absorbed slightly through the skin. At high concentrations, HAAs have irritating and corrosive properties; however, typical concentrations of HAAs found in drinking water are extremely low. HAAs are typically eliminated from the body through normal processes between 1 day and 2 weeks after ingestion, depending on the type of acid. [2]

Highly concentrated HAAs have been found to cause toxicity in various organs, including the liver and pancreas, in animal studies. This includes an increased risk of cancer, particularly of the liver and bladder. For this reason, the EPA considers a few HAAs (namely DCA and TCA) as potential human carcinogens. [2] They may also cause developmental and reproductive problems during pregnancy. [9] However, short-term adverse health effects are unlikely after ingesting dilute quantities of HAAs, [2] and the long-term low-level risks associated with drinking treated water with residual HAAs are much lower than the risks of drinking untreated water. [10]

Chemical characteristics

The inductive effect caused by the electronegative halogens often results in the higher acidity of these compounds by stabilising the negative charge of the conjugate base.

See also

Related Research Articles

<span class="mw-page-title-main">Chlorine</span> Chemical element, symbol Cl and atomic number 17

Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.

The chlorite ion, or chlorine dioxide anion, is the halite with the chemical formula of ClO
2
. A chlorite (compound) is a compound that contains this group, with chlorine in the oxidation state of +3. Chlorites are also known as salts of chlorous acid.

<span class="mw-page-title-main">Sodium hypochlorite</span> Chemical compound (known in solution as bleach)

Sodium hypochlorite is an alkaline inorganic chemical compound with the formula NaOCl. It is commonly known in a dilute aqueous solution as bleach or chlorine bleach. It is the sodium salt of hypochlorous acid, consisting of sodium cations and hypochlorite anions.

<span class="mw-page-title-main">Water purification</span> Process of removing impurities from water

Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids, and gases from water. The goal is to produce water that is fit for specific purposes. Most water is purified and disinfected for human consumption, but water purification may also be carried out for a variety of other purposes, including medical, pharmacological, chemical, and industrial applications. The history of water purification includes a wide variety of methods. The methods used include physical processes such as filtration, sedimentation, and distillation; biological processes such as slow sand filters or biologically active carbon; chemical processes such as flocculation and chlorination; and the use of electromagnetic radiation such as ultraviolet light.

<span class="mw-page-title-main">Tetrachloroethylene</span> Chemical compound in very wide use

Tetrachloroethylene, also known under the systematic name tetrachloroethene, or perchloroethylene, and abbreviations such as "perc", and "PCE", is a chlorocarbon with the formula Cl2C=CCl2. It is a colorless liquid widely used for dry cleaning of fabrics, hence it is sometimes called "dry-cleaning fluid". It also has its uses as an effective automotive brake cleaner. It has a mild sweet, sharp odor, detectable by most people at a concentration of 50 ppm.

<span class="mw-page-title-main">Trichloroethylene</span> C2HCl3, widely used industrial solvent

Trichloroethylene (TCE) is a halocarbon with the formula C2HCl3, commonly used as an industrial degreasing solvent. It is a clear, colourless, non-flammable, volatile liquid with a chloroform-like pleasant mild smell and sweet taste. Its IUPAC name is trichloroethene. Trichloroethylene has been sold under a variety of trade names. Industrial abbreviations include TCE, trichlor, Trike, Tricky and tri. Under the trade names Trimar and Trilene, it was used as a volatile anesthetic and as an inhaled obstetrical analgesic. It should not be confused with the similar 1,1,1-trichloroethane, which is commonly known as chlorothene.

<span class="mw-page-title-main">Chlorine dioxide</span> Chemical compound

Chlorine dioxide is a chemical compound with the formula ClO2 that exists as yellowish-green gas above 11 °C, a reddish-brown liquid between 11 °C and −59 °C, and as bright orange crystals below −59 °C. It is usually handled as an aqueous solution. It is commonly used as a bleach. More recent developments have extended its applications in food processing and as a disinfectant.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

<span class="mw-page-title-main">Halomethane</span> Halogen compounds derived from methane

Halomethane compounds are derivatives of methane with one or more of the hydrogen atoms replaced with halogen atoms. Halomethanes are both naturally occurring, especially in marine environments, and human-made, most notably as refrigerants, solvents, propellants, and fumigants. Many, including the chlorofluorocarbons, have attracted wide attention because they become active when exposed to ultraviolet light found at high altitudes and destroy the Earth's protective ozone layer.

Halocarbon compounds are chemical compounds in which one or more carbon atoms are linked by covalent bonds with one or more halogen atoms resulting in the formation of organofluorine compounds, organochlorine compounds, organobromine compounds, and organoiodine compounds. Chlorine halocarbons are the most common and are called organochlorides.

In organic chemistry, free-radical halogenation is a type of halogenation. This chemical reaction is typical of alkanes and alkyl-substituted aromatics under application of UV light. The reaction is used for the industrial synthesis of chloroform (CHCl3), dichloromethane (CH2Cl2), and hexachlorobutadiene. It proceeds by a free-radical chain mechanism.

In chemistry, trihalomethanes (THMs) are chemical compounds in which three of the four hydrogen atoms of methane are replaced by halogen atoms. Trihalomethanes with all the same halogen atoms are called haloforms. Many trihalomethanes find uses in industry as solvents or refrigerants. Some THMs are also environmental pollutants, and few are considered carcinogenic.

The chemical compound 1,2-dichloroethane, commonly known as ethylene dichloride (EDC), is a chlorinated hydrocarbon. It is a colourless liquid with a chloroform-like odour. The most common use of 1,2-dichloroethane is in the production of vinyl chloride, which is used to make polyvinyl chloride (PVC) pipes, furniture and automobile upholstery, wall coverings, housewares, and automobile parts. 1,2-Dichloroethane is also used generally as an intermediate for other organic chemical compounds, and as a solvent. It forms azeotropes with many other solvents, including water and other chlorocarbons.

<span class="mw-page-title-main">Portable water purification</span> Self-contained, easily transported units used to purify water from untreated sources

Portable water purification devices are self-contained, easily transported units used to purify water from untreated sources for drinking purposes. Their main function is to eliminate pathogens, and often also of suspended solids and some unpalatable or toxic compounds.

<span class="mw-page-title-main">Mutagen X</span> Chemical compound

Mutagen X (MX), or 3-chloro-4-(dichloromethyl)-5-hydroxy-5H-furan-2-one, is a byproduct of the disinfection of water by chlorination. MX is produced by reaction of chlorine with natural humic acids.

Chloramination is the treatment of drinking water with a chloramine disinfectant. Both chlorine and small amounts of ammonia are added to the water one at a time which react together to form chloramine, a long lasting disinfectant. Chloramine disinfection is used in both small and large water treatment plants.

Disinfection by-products (DBPs) are organic and inorganic compounds resulting from chemical reactions between organic and inorganic substances such as contaminates and chemical treatment disinfection agents, respectively, in water during water disinfection processes.

<span class="mw-page-title-main">Haloform reaction</span> Chemical reaction involving repeated halogenation of an acetyl group (–COCH3)

In chemistry, the haloform reaction is a chemical reaction in which a haloform is produced by the exhaustive halogenation of an acetyl group, in the presence of a base. The reaction can be used to transform acetyl groups into carboxyl groups or to produce chloroform, bromoform, or iodoform. Note that fluoroform can't be prepared in this way.

Drinking water quality in the United States is generally safe. In 2016, over 90 percent of the nation's community water systems were in compliance with all published U.S. Environmental Protection Agency standards. Over 286 million Americans get their tap water from a community water system. Eight percent of the community water systems—large municipal water systems—provide water to 82 percent of the US population. The Safe Drinking Water Act requires the US EPA to set standards for drinking water quality in public water systems. Enforcement of the standards is mostly carried out by state health agencies. States may set standards that are more stringent than the federal standards.

<span class="mw-page-title-main">Water chlorination</span> Chorination of water

Water chlorination is the process of adding chlorine or chlorine compounds such as sodium hypochlorite to water. This method is used to kill bacteria, viruses and other microbes in water. In particular, chlorination is used to prevent the spread of waterborne diseases such as cholera, dysentery, and typhoid.

References

  1. "Drinking Water". cehtp.org. Archived from the original on 2019-04-08. Retrieved 2016-08-15.
  2. 1 2 3 4 5 "Haloacetic Acids (five) (HAA5): Health Information Summary" (PDF). New Hampshire Department of Environmental Services. Retrieved 27 October 2023.
  3. "Occurrence Assessment for the Final Stage 2 Disinfectants and Disinfection Byproducts Rule". United States Environmental Protection Agency. Retrieved 27 October 2023.
  4. Levesque, S; Rodriguez, MJ; Serodes, J; Beaulieu, C; Proulx, F (2006). "Effects of indoor drinking water handling on trihalomethanes and haloacetic acids". Water Res. 40 (15): 2921–30. doi:10.1016/j.watres.2006.06.004. PMID   16889815.
  5. "Disinfection Byproducts: A Reference Resource". United States Environmental Protection Agency. Retrieved 27 October 2023.
  6. 1 2 https://www.gov.nl.ca/ecc/waterres/drinkingwater/haa/
  7. "Column Name: HAA9". United States Environmental Protection Agency. Retrieved 27 October 2023.
  8. "Haloacetic acids (HAA9)". Environmental Working Group. Retrieved 27 October 2023.
  9. "Haloacetic Acids in Public Water and Health". Iowa Public Health Tracking Portal. Iowa Department of Public Health. Retrieved 2023-10-27.
  10. "Disinfection byproducts: HAA5". Minnesota Public Health Data Access. Minnesota Department of Health. Retrieved 2023-10-27.

Further reading