High-density polyethylene

Last updated
HDPE has SPI resin ID code 2 Symbol Resin Code 2 HDPE.svg
HDPE has SPI resin ID code 2

High-density polyethylene (HDPE) or polyethylene high-density (PEHD) is a thermoplastic polymer produced from the monomer ethylene. It is sometimes called "alkathene" or "polythene" when used for HDPE pipes. [1] With a high strength-to-density ratio, HDPE is used in the production of plastic bottles, corrosion-resistant piping, geomembranes and plastic lumber. HDPE is commonly recycled, and has the number "2" as its resin identification code.

Contents

In 2007, the global HDPE market reached a volume of more than 30 million tons. [2]

Properties

Thermophysical properties of high density polyethylene (HDPE) [3]
Density961 kg/m3
Melting point131.8 °C.
Temperature of crystallization121.9 °C.
Latent heat of fusion188.6 kJ/kg.
Thermal conductivity 0.54 W/m.°C. at °C.
Specific heat capacity1331 to 2400 J/kg-K
Specific heat (solid)2.9 kJ/kg. °C.
Crystallinity61%

HDPE is known for its high strength-to-density ratio. [4] The density of HDPE ranges from 930 to 970 kg/m3. [5] Although the density of HDPE is only marginally higher than that of low-density polyethylene, HDPE has little branching, giving it stronger intermolecular forces and tensile strength (38 MPa versus 21 MPa) than LDPE. [6] The difference in strength exceeds the difference in density, giving HDPE a higher specific strength. [7] It is also harder and more opaque and can withstand somewhat higher temperatures (120 °C/248 °F for short periods). High-density polyethylene, unlike polypropylene, cannot withstand normally required autoclaving conditions. The lack of branching is ensured by an appropriate choice of catalyst (e.g., Ziegler–Natta catalysts) and reaction conditions.

HDPE is resistant to many different solvents, and is exceptionally challenging to glue; joints are typically made by welding.

The physical properties of HDPE can vary depending on the molding process that is used to manufacture a specific sample; to some degree, a determining factor is the international standardized testing methods employed to identify these properties for a specific process. For example, in rotational molding, to identify the environmental stress crack resistance of a sample, the notched constant tensile load test (NCTL) is put to use. [8]

Owing to these desirable properties, pipes constructed out of HDPE are ideally applicable for drinking water [9] and waste water (storm and sewage). [10]

Applications

HDPE has a wide variety of applications; for applications that fall within the properties of other polymers, the choice to use HDPE is usually economic:

HDPE sheet which has been extrusion welded T Joint cross section.jpg
HDPE sheet which has been extrusion welded

HDPE is also used for cell liners in United States subtitle D sanitary landfills, wherein large sheets of HDPE are either extrusion welded or wedge welded to form a homogeneous chemical-resistant barrier, with the intention of preventing the pollution of soil and groundwater by the liquid constituents of solid waste.

HDPE is preferred by the pyrotechnics trade for mortars over steel or PVC tubes, being more durable and safer: HDPE tends to rip or tear in a malfunction instead of shattering and becoming shrapnel like the other materials.

Milk bottles, jugs, and other hollow goods manufactured through blow molding are the most important application area for HDPE, accounting for one-third of worldwide production, or more than 8 million tonnes.

Above all, China, where beverage bottles made from HDPE were first imported in 2005, is a growing market for rigid HDPE packaging, as a result of its improving standard of living. In India and other highly populated, emerging nations, infrastructure expansion includes the deployment of pipes and cable insulation made from HDPE. [2] The material has benefited from discussions about possible health and environmental problems caused by PVC and polycarbonate associated bisphenol A (BPA), as well as its advantages over glass, metal, and cardboard.

Production

Industrial production of HDPE from ethylene happens through either Ziegler-Natta polymerization or the Phillips slurry process. The Ziegler-Natta method uses a combination of catalysts, including titanium tetrachloride, in contact with gaseous ethylene to precipitate high-density polyethylene. [17] In a similar way, the Phillips slurry process uses silica-based catalysts in contact with a fast-moving hydrocarbon and polyethylene slurry to precipitate high density polyethylene. [18]

Processing will determine the properties of the HDPE. The method used to synthesize the HDPE is crucial because the micro structure of the HDPE will vary. The Phillips Slurry process results in HDPE with less branching and more precise molecular weights than the Ziegler process, but the Ziegler process provides greater flexibility in the type of polyethylene produced. [18]

The molecular weight of HDPE refers to the length of the polyethylene chains, and helps determine properties such as flexibility, yield strength, and melt temperature. After the precipitate is formed, the temperature, pressure, and cooling time during processing will dictate the degree of crystallinity, with a higher degree of crystallinity resulting in greater rigidity and chemical resistance. [19] Depending on the application, the method and processing steps can be adjusted for an ideal result.

Once the HDPE has been synthesized, it is ready to be used in commercial products. Industrial production methods for HDPE products include injection molding for complex shapes such as toys. Extrusion molding is used for constant-profile products such as pipes and films. Blow molding is intended for hollow products, specifically bottles and plastic bags. Rotational molding is used for large, seamless parts such as chemical drums and kayaks. [19] The method used during processing depends on the product requirements, with each having benefits for a given application.

See also

Related Research Articles

<span class="mw-page-title-main">Polyethylene</span> Most common thermoplastic polymer

Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bottles, etc.). As of 2017, over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market.

<span class="mw-page-title-main">Thermoplastic</span> Plastic that softens with heat and hardens on cooling

A thermoplastic, or thermosoftening plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

<span class="mw-page-title-main">Polypropylene</span> Thermoplastic polymer

Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Low-density polyethylene</span> Chemical compound

Low-density polyethylene (LDPE) is a thermoplastic made from the monomer ethylene. It was the first grade of polyethylene, produced in 1933 by Dr John C. Swallow and M.W Perrin who were working for Imperial Chemical Industries (ICI) using a high pressure process via free radical polymerization. Its manufacture employs the same method today. The EPA estimates 5.7% of LDPE is recycled in the United States. Despite competition from more modern polymers, LDPE continues to be an important plastic grade. In 2013 the worldwide LDPE market reached a volume of about US$33 billion.

<span class="mw-page-title-main">Linear low-density polyethylene</span> Polymer

Linear low-density polyethylene (LLDPE) is a substantially linear polymer (polyethylene), with significant numbers of short branches, commonly made by copolymerization of ethylene with longer-chain olefins. Linear low-density polyethylene differs structurally from conventional low-density polyethylene (LDPE) because of the absence of long chain branching. The linearity of LLDPE results from the different manufacturing processes of LLDPE and LDPE. In general, LLDPE is produced at lower temperatures and pressures by copolymerization of ethylene and such higher alpha-olefins as butene, hexene, or octene. The copolymerization process produces an LLDPE polymer that has a narrower molecular weight distribution than conventional LDPE and in combination with the linear structure, significantly different rheological properties.

Ultra-high-molecular-weight polyethylene is a subset of the thermoplastic polyethylene. Also known as high-modulus polyethylene (HMPE), it has extremely long chains, with a molecular mass usually between 3.5 and 7.5 million amu. The longer chain serves to transfer load more effectively to the polymer backbone by strengthening intermolecular interactions. This results in a very tough material, with the highest impact strength of any thermoplastic presently made.

Coordination polymerisation is a form of polymerization that is catalyzed by transition metal salts and complexes.

Cross-linked polyethylene, commonly abbreviated PEX, XPE or XLPE, is a form of polyethylene with cross-links. It is used predominantly in building services pipework systems, hydronic radiant heating and cooling systems, domestic water piping, insulation for high tension electrical cables, and baby play mats. It is also used for natural gas and offshore oil applications, chemical transportation, and transportation of sewage and slurries. PEX is an alternative to polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC) or copper tubing for use as residential water pipes.

A polyolefin is a type of polymer with the general formula (CH2CHR)n where R is an alkyl group. They are usually derived from a small set of simple olefins (alkenes). Dominant in a commercial sense are polyethylene and polypropylene. More specialized polyolefins include polyisobutylene and polymethylpentene. They are all colorless or white oils or solids. Many copolymers are known, such as polybutene, which derives from a mixture of different butene isomers. The name of each polyolefin indicates the olefin from which it is prepared; for example, polyethylene is derived from ethylene, and polymethylpentene is derived from 4-methyl-1-pentene. Polyolefins are not olefins themselves because the double bond of each olefin monomer is opened in order to form the polymer. Monomers having more than one double bond such as butadiene and isoprene yield polymers that contain double bonds (polybutadiene and polyisoprene) and are usually not considered polyolefins. Polyolefins are the foundations of many chemical industries.

<span class="mw-page-title-main">Plastic milk container</span> Plastic bottle used to store commercially sold milk

Plastic milk containers are plastic containers for storing, shipping and dispensing milk. Plastic bottles, sometimes called jugs, have largely replaced glass bottles for home consumption. Glass milk bottles have traditionally been reusable while light-weight plastic bottles are designed for single trips and plastic recycling.

Medium-density polyethylene (MDPE) is a type of polyethylene defined by a density range of 0.926–0.940 g/cm3. It is less dense than HDPE, which is more common.

<span class="mw-page-title-main">Plastic bottle</span> Narrow-necked container

A plastic bottle is a bottle constructed from high-density or low density plastic. Plastic bottles are typically used to store liquids such as water, soft drinks, motor oil, cooking oil, medicine, shampoo, milk, and ink. The size ranges from very small bottles to large carboys. Consumer blow molded containers often have integral handles or are shaped to facilitate grasping.

Polybutylene (polybutene-1, poly(1-butene), PB-1) is a polyolefin or saturated polymer with the chemical formula (CH2CH(Et))n. Not be confused with polybutene, PB-1 is mainly used in piping.

Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

<span class="mw-page-title-main">Plastic pipework</span> Tubular section or hollow cylinder made of plastic

Plastic pipe is a tubular section, or hollow cylinder, made of plastic. It is usually, but not necessarily, of circular cross-section, used mainly to convey substances which can flow—liquids and gases (fluids), slurries, powders and masses of small solids. It can also be used for structural applications; hollow pipes are far stiffer per unit weight than solid members.

<span class="mw-page-title-main">Twinwall plastic</span>

Twin-wall plastic, specifically twin-wall polycarbonate, is an extruded multi-wall polymer product created for applications where its strength, thermally insulative properties, and moderate cost are ideal. Polycarbonate, which is most commonly formed through the reaction of Bisphenol A and Carbonyl Chloride, is an extremely versatile material. It is significantly lighter than glass, while managing to be stronger, more flexible, and more impact resistant. Twin-wall polycarbonate is used most commonly for green houses, where it can support itself in a structurally sound configuration, limit the amount of UV light due to its nominal translucence, and can withstand the rigors of daily abuse in an outdoor environment. The stagnant air in the cellular space between sheets provides insulation, and additional cell layers can be extruded to enhance insulative properties at the cost of light transmission.

<span class="mw-page-title-main">Plastic</span> Material of a wide range of synthetic or semi-synthetic organic solids

Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems. Most modern plastics are derived from fossil fuel-based chemicals like natural gas or petroleum; however, recent industrial methods use variants made from renewable materials, such as corn or cotton derivatives.

<span class="mw-page-title-main">Expanded polyethylene</span>

Expanded polyethylene refers to foams made from polyethylene. Typically it is made from expanded pellets made with use of a blowing agent, followed by expansion into a mold in a steam chest - the process is similar to that used to make expanded polystyrene foam.

HDPE pipe is a type of flexible plastic pipe used to transfer fluids and gases. It is often employed for replacing aging concrete or steel main pipelines. Constructed from the thermoplastic HDPE, it has low permeability and robust molecular bonding, making it suitable for high-pressure pipelines. HDPE pipe is often used for water mains, gas mains, sewer mains, slurry transfer lines, rural irrigation, fire-suppression system supply lines, electrical and communication conduits, and stormwater and drainage pipes.

References

  1. Pipe materials. level.org.nz
  2. 1 2 "Market Study: Polyethylene HDPE". Ceresana Research.
  3. Araújo, J. R.; Waldman, W. R.; De Paoli, M. A. (2008-10-01). "Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect". Polymer Degradation and Stability. 93 (10): 1770–1775. doi:10.1016/j.polymdegradstab.2008.07.021. ISSN   0141-3910.
  4. Thermoforming HDPE Archived 2012-02-05 at the Wayback Machine . Dermnet.org.nz
  5. Typical Properties of Polyethylene (PE). Ides.com. Retrieved on 2011-12-30.
  6. Askeland, Donald R. (2016). The science and engineering of materials. Wendelin J. Wright (7 ed.). Boston, MA. p. 594. ISBN   978-1-305-07676-1. OCLC   903959750.{{cite book}}: CS1 maint: location missing publisher (link)
  7. Compare Materials: HDPE and LDPE. Makeitfrom.com. Retrieved on 2011-12-30.
  8. www.rotomolding.org. Retrieved 2016-4-20.
  9. 1 2 3 "Acu-Water | HDPE Blueline Water Pipe". Acu-Tech Piping Systems.
  10. 1 2 "Acu-Sewer Pressure Pipe for Sewer Mains". Acu-Tech Piping Systems.
  11. "Puck Board (HDPE Sheets)". Professional Plastics. Retrieved 24 December 2018.
  12. AstroRad. European Space Agency . 25 January 2019.
  13. Gaza, Razvan (14 July 2018). "International Science Aboard Orion EM-1: The Matroshka AstroRad Radiation Experiment (MARE) Payload" (PDF). nasa.gov. Retrieved 27 August 2019.
  14. "Acu-Gas Yellow High Pressure HDPE Pipe". Acu-Tech Piping Systems.
  15. Dermnet.org.nz. Dermnet.org.nz (2011-07-01). Retrieved on 2011-12-30.
  16. "Acu-Comms White Communications Conduit". Acu-Tech Piping Systems.
  17. "Ziegler-Natta catalyst | Polymerization, Olefins, Alkylaluminums | Britannica". www.britannica.com. Retrieved 2023-11-16.
  18. 1 2 Dunn, A. S. (1990). "Principles of polymer systems, 3rd edn ferdinand rodriguez, taylor & francis, new york, 1989. pp. xiv + 640, £35.00. isbn 0-89116-176-7". British Polymer Journal. 23 (4): 361–361. doi:10.1002/pi.1990.4980230411. ISSN   0007-1641.
  19. 1 2 Gasson, Peter C. (June 2011). "Materials Sciences and Engineering – Eighth edition. W. D. Callister and D. G. Rethwisch John Wiley and Sons, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK. 2010. 968pp. Illustrated. £47.99. ISBN 978-0-470-50586-1". The Aeronautical Journal. 115 (1168): 388–389. doi:10.1017/s0001924000005947. ISSN   0001-9240.