High Luminosity Large Hadron Collider

Last updated

The High Luminosity Large Hadron Collider (HL-LHC; formerly referred to as HiLumi LHC) is an upgrade to the Large Hadron Collider, operated by the European Organization for Nuclear Research (CERN), located at the French-Swiss border near Geneva. From 2011 to 2020, the project was led by Lucio Rossi. In 2020, the lead role was taken up by Oliver Brüning. [1] [2] [3]

Contents

The upgrade started as a design study in 2010, for which a European Framework Program 7 grant was allocated in 2011, [4] [5] with goal of boosting the accelerator's potential for new discoveries in physics. The design study was approved by the CERN Council in 2016 and HL-LHC became a full-fledged CERN project. [6] [7] The upgrade work is currently in progress and physics experiments are expected to start taking data at the earliest in 2028. [8] [9]

The HL-LHC project will deliver proton-proton collisions at 14 TeV with an integrated luminosity of 3 ab−1 for both ATLAS and CMS experiments, 50 fb−1 for LHCb, and 5 fb−1 for ALICE. In the heavy-ion sector, the integrated luminosities of 13 nb−1 and 50 nb−1 will be delivered for lead-lead and proton-lead collisions, respectively. [10] The inverse femtobarn (fb−1) unit measures the time-integrated luminosity in terms of the number of collisions per femtobarn of the target's cross-section. The increase in the integrated luminosity for the aforementioned major LHC experiments will provide a better chance to see rare processes and improving statistically marginal measurements. [11] [12]

Introduction

Members of the 5th High Luminosity LHC Collaboration Board and Participants of the 5th Joint HiLumi LHC-LARP Annual Meeting gathered at CERN in October 2015. HL-LHC-collab.jpg
Members of the 5th High Luminosity LHC Collaboration Board and Participants of the 5th Joint HiLumi LHC-LARP Annual Meeting gathered at CERN in October 2015.

Many different paths exist for upgrading colliders. A collection of different designs of the high luminosity interaction regions is being maintained by the European Organization for Nuclear Research (CERN). [13] A workshop was held in 2006 to establish the most promising options. [14] [15]

Increasing LHC luminosity involves reduction of the beam size at the collision point, and either the reduction of bunch length and spacing, or significant increase in bunch length and population. The maximum integrated luminosity increase of the existing nominal LHC luminosity (1⋅1034 cm2⋅s1) is about a factor of 4 higher than the LHC's performance at its peak luminosity of 2⋅1034 cm2⋅s1, unfortunately far below the LHC upgrade project's initial ambition of a factor of 10. However, at the LUMI'06 workshop, [14] several suggestions were proposed that would boost the LHC peak luminosity by a factor of 10 beyond nominal towards 1⋅1035 cm2⋅s1.

The peak luminosity at LHC was limited due to the cooling capacity of its triplet magnets and secondly due to the detector limits. The resultant higher event rate posed challenges for the particle detectors located in the collision areas. [16] Through the ongoing upgrades, HL-LHC's peak luminosity is expected to be 5⋅1034 cm2⋅s1 and would most likely be pushed to 7.5⋅1034 cm2⋅s1. [9]

Physics goals

The HL-LHC upgrade being applicable to almost all major LHC experiments has a wide range of physics goals. Increasing the number of collisions to 140—each time the proton particle beams meet at the center of the ATLAS and CMS detectors—from the current number of 30, will open a number of new avenues for observing rare processes and particles. The boost in the integrated luminosity, or evidently the larger collision event datasets that would be accumulated through HL-LHC in case of all the LHC experiments, is the most significant aspect towards achieving the goals described below. The motivation for the construction of large underground infrastructure at HL-LHC therefore, is to have a high efficiency and highly reliable machine which can deliver the required integrated luminosity.

Major goals of HL-LHC thus belong to the following five categories; improved Standard Model measurements, searches for beyond the Standard Model (BSM) physics, flavor physics of heavy quarks and leptons, studies of the properties of the Higgs boson, and the studies of QCD matter at high density and temperature. [17] [10]

In September 2019, CERN opened its doors to the public for two special days at the heart of one of the world's largest particle-physics laboratories. At this occasion CERN specialists presented the High Luminosity LHC project to members of the general public. HLLHC3.jpg
In September 2019, CERN opened its doors to the public for two special days at the heart of one of the world's largest particle-physics laboratories. At this occasion CERN specialists presented the High Luminosity LHC project to members of the general public.

Measurements of the Higgs boson and understanding its connection to the electroweak symmetry breaking remains the primary goal. In the domain of flavour physics; LHCb, ATLAS and CMS together will test the unitarity of the Cabibbo–Kobayashi–Maskawa matrix, and ATLAS and CMS will measure the properties of the top quark, the fermion with the largest known mass and largest Yukawa coupling. HL-LHC will also add to the knowledge of parton distribution functions (PDFs) by measuring several Standard Model processes with the jets, top quarks, photons and electroweak gauge bosons in their final state. The jet and photon production in the heavy ion collisions forms the basis of QCD perturbation theory probes, and HL-LHC will measure this at very high energy scales. Owing to these high energy collisions, there is also a possibility for HL-LHC to detect BSM phenomena such as baryogenesis, dark matter, answers to the flavour problem, neutrino masses and insights into the strong CP problem. [17] [10] [18] [19]

The upgrades to the heavy-ion injectors are also in progress and would bring up even more opportunities to observe very rare phenomena and to search for BSM physics.

Project timeline

Collimator installation in the LHC ring at Point 1, 2018 HLLHC2.jpg
Collimator installation in the LHC ring at Point 1, 2018

The HL-LHC project was initiated in 2010, and the following has been the timeline till 2020, followed by the tentative future stages. [7]

2010: HL-LHC was established at CERN as a design study.

2011: The FP7 HL-LHC design study was approved and started. [4]

2014: The first preliminary report on the design study was published. [20]

2015: Budget and schedule along with technical design report was made available. [21]

2016: CERN Council approved the HL-LHC project with its initial budget and schedule. [7] Followed by which the hardware parts consisting of components and models were validated.

Between 2018 and 2020: The prototypes were tested and final Technical Design report was published. [7] The underground excavation work was also carried out. Although the civil engineering work and prototyping process would continue till the end of 2021.

High Luminosity LHC - clusterD test station vertical cryostat installation seen in CERN's magnet test facility (SM18). HLLHC4.jpg
High Luminosity LHC – clusterD test station vertical cryostat installation seen in CERN's magnet test facility (SM18).

Between 2019 and 2024: The construction and testing of hardware parts is planned.

2021-2023: All surface bindings would be delivered.

2022-2024: The inner triplet string will be installed followed by its operation test.

2025-2027: New magnets, crab-cavities, cryo-plants, collimators, superconducting links, ancillary equipment, and absorbers are planned to be installed. [7]

If all above planned activities are completed according to the timeline, HL-LHC would be able to start its physics operation in 2028. [9]

Accelerator upgrades

The following upgrades to machine systems forms the core of the new HL-LHC.

Installation of the crab cavity test facility for High Luminosity LHC in the Super Proton Synchrotron tunnel HL-LHC-crab.jpg
Installation of the crab cavity test facility for High Luminosity LHC in the Super Proton Synchrotron tunnel

Quadrupole magnets: The strong magnets along with the huge rings are a necessary aspect of LHC's functionality. HL-LHC will have quadrupole magnets with the strength of 12 tesla as opposed to 8 tesla in LHC. Such superconducting magnets made up of inter-metallic niobium-tin (Nb3Sn), compound would be installed around the CMS and ATLAS detector. A ten-year-long joint project between CERN, Brookhaven National Laboratory, Fermilab, and Lawrence Berkeley National Laboratory known as United States Department of Energy LHC Accelerator Research Program (US–LARP) successfully built and tested such quadrupole magnets. [22] [23] [24] [25] 20 inner triplet quadrupoles are in the production phase at CERN and in the US. [26]

Dipole magnets: For inserting the new collimators, two of the LHC's dipole magnets will have to be replaced with smaller ones. They would be stronger (11 tesla) than LHC's dipole magnets (8.3 tesla) and be more powerful in bending the beam trajectories. As of now six 11 T dipoles are in the production phase. [26] These magnets would probably be installed only after HL-LHC is fully implemented, although the final decision is yet to come.

Installation of two High Luminosity LHC connection cryostats, November 2019. HL LHC-cryosat.jpg
Installation of two High Luminosity LHC connection cryostats, November 2019.

Crab cavities: The function of the crab cavities is to tilt and project the beams in the required direction. This tilting maximizes the overlap between the colliding bunches, leading to an increase in the achievable instantaneous luminosity. ATLAS and CMS together will have 16 crab cavities; which will give transverse momentum to the beams to increase the collision probability. [27] [28] [29]

Beam optics: As per the current HL-LHC design the beam intensity will decrease due to the burn-off of the circulating proton beams inside the collider. Maintaining the intensity at a constant level throughout the lifespan of beam is thus a major challenge. Nevertheless, plan is to at least have a system that would allow beam focusing or the concentration of the beams before the collision to remain constant. [6] [27]

Cryogenics: Implementation of HL-LHC would require larger cryogenic plants, plus larger 1.8 Kelvin refrigerators, along with sub-cooling heat exchangers. New cooling circuits are also to be developed. The majority of these upgrades are for interaction points, P1, P4, P5, and P7. While P1, P4, and P5 will receive new cryogenic plants, P7 will have new cryogenic circuits. [27] [29]

Machine protection and collimators: The collimators are responsible for absorbing any extra particles that deviate from the original beam trajectory and can potentially damage the machines. The higher luminosities are bound to generate such highly energetic particles. HL-LHC design thus contains ways to prevent damages by replacing 60 out of 118 collimators and adding about 20 new ones. The upgraded collimators will also have lower electromagnetic interference with beams. [27] [29]

Superconducting power lines: To meet the HL-LHC accelerator requirements, superconducting power transmission lines made of magnesium diboride (MgB2) will be used to transmit the current of about 100,000 amperes. [27] [29]

Injector upgrades

New long-coils for the Nb3Sn quadrupole magnets for High Luminosity LHC, June 2017 HLLHC1.jpg
New long-coils for the Nb3Sn quadrupole magnets for High Luminosity LHC, June 2017

As part of the HL-LHC, significant changes will be made to the proton injector. The beams that come to LHC are pre-accelerated by following 4 accelerators.

  1. Linear Accelerator (Linac4)
  2. Proton Synchrotron Booster (PSB)
  3. Proton Synchrotron (PS)
  4. Super Proton Synchrotron (SPS)

All four of these accelerators, together known as the Injectors will be upgraded through the LHC Injector Upgrade (LIU) project during the Long Shutdown 2 (LS2). [30] [31] The LIU is responsible for delivering beams of very high brightness to HL-LHC. The proton injectors will be upgraded to produce proton beams with double the original luminosity and 2.4 times the brightness.

The replacement of Linear Accelerator 2 (Linac2 - which delivered the proton beams) with Linear Accelerator 4 (Linac4) was achieved in 2020. [32] The Linac4 is a 160 MeV linear accelerator and delivers H beams with twice the beam brightness compared to its older counterparts. [9] [29] [30] LIU also upgraded the cesiated radiofrequency-plasma H ion source that feeds Linac4. The challenge here was to have a high current, low emmitance source beam. [33]

Heavy-ion injector upgrades through the upgrades to the Low Energy Ion Ring (LEIR) and Linac3 are also being designed. [31] [34] The source extraction system of Linac3 was re-designed, and by the end of LS2 it successfully increased the extracted source beam intensity by 20%. [35]

Upgrade program of the experiments

To handle the increased luminosity, number of simultaneous particle interactions, massive amount of data, and radiation of the HL-LHC environment, the detectors will be upgraded.

ALICE: The upgrade will increase the lifetime of the Tile Calorimeter (TileCal), which is a hadronic calorimeter sensitive to charged particles, by 20 years. The beam pipe at ALICE will also be replaced by one with a smaller diameter. The tracking system and the time projection chambers will be upgraded along with a new faster interaction trigger detector. [29] [10]

Concrete coating of underground area close to LHC Point 1 (P1 - ATLAS) to prepare for High Luminosity LHC, November 2019 HLLHC5.jpg
Concrete coating of underground area close to LHC Point 1 (P1 - ATLAS) to prepare for High Luminosity LHC, November 2019

ATLAS: The liquid argon calorimeter at ATLAS will be upgraded to identify the electrons and photons more effectively. The main readout electronics of the calorimeter will be completely replaced to let the detector identify rare particle interactions. These changes are planned for Long Shutdown 3 (LS3) of LHC. [36] [29] [10]

CMS: CMS will carry out numerous upgrades to its inner tracking system, the trigger system, the calorimeter, and the muon detection systems during Long Shutdown 2 (LS2) and LS3. These changes are based on the expected pile-up densities and increase in radiation due to the higher luminosity. Similar changes are also planned for the ATLAS experiment. [29] [10]

FASER-2: LHC's FASER experiment will undergo several upgrades and be turned into FASER-2 to fully utilize HL-LHC's capabilities. It will have a decay volume of 10 m3, which is 3 orders of magnitude higher than FASER and will increase the sensitivity range by 4 orders of magnitude. It will probe into the regime of dark photons, dark Higgs bosons, heavy neutral leptons, and weak gauge boson coupling. It will also have the subdetector FASERnu for neutrino and antineutrino observations. [37]

LHCb: LHCb will receive reduced aperture central vacuum chambers during LS2. The Vertex Locator (VELO) detector which measures the primary and displaced vertices of short-lived particles will be enhanced to meet the increased radiation and particle interaction rates. [29] [10]

MoEDAL: For LHCs Run-3 MoEDAL will implement a new sub-detector called MoEDAL's Apparatus for the detection of Penetrating Particles (MAPP). For HL-LHC MAPP-1 would be upgraded to MAPP-2. [38]

Scattering and Neutrino Detector (SND): SND and will begin its first operation only in 2022, during the LHC Run-3. The upgrade plan for SND at HL-LHC is to continue developing the detector with the aim of improving the statistics of collision events, and expand its pseudorapidity range for studies of heavy-quark production and neutrino interactions. [39]

TOTEM: The TOTEM-CMS collaboration which has been operating the Proton Precision Spectrometer (PPS) since 2016, will measure the central-exclusive production events at the HL-LHC with an upgraded version of the near-beam PPS. [40]

Related Research Articles

<span class="mw-page-title-main">CERN</span> Research centre in Switzerland

The European Organization for Nuclear Research, known as CERN, is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a suburb of Geneva, on the France–Switzerland border. It comprises 23 member states. Israel, admitted in 2013, is the only non-European full member. CERN is an official United Nations General Assembly observer.

<span class="mw-page-title-main">Tevatron</span> Defunct particle accelerator at Fermilab in Illinois, USA (1983–2011)

The Tevatron was a circular particle accelerator in the United States, at the Fermi National Accelerator Laboratory, east of Batavia, Illinois, and is the second highest energy particle collider ever built, after the Large Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN) near Geneva, Switzerland. The Tevatron was a synchrotron that accelerated protons and antiprotons in a 6.28 km (3.90 mi) ring to energies of up to 1 TeV, hence its name. The Tevatron was completed in 1983 at a cost of $120 million and significant upgrade investments were made during its active years of 1983–2011.

<span class="mw-page-title-main">Compact Muon Solenoid</span> One of the two general-purposes experiments at the CERNs Large Hadron Collider

<span class="mw-page-title-main">Large Hadron Collider</span> Particle accelerator at CERN, Switzerland

The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories, as well as more than 100 countries. It lies in a tunnel 27 kilometres (17 mi) in circumference and as deep as 175 metres (574 ft) beneath the France–Switzerland border near Geneva.

<span class="mw-page-title-main">ATLAS experiment</span> CERN LHC experiment

ATLAS is the largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN in Switzerland. The experiment is designed to take advantage of the unprecedented energy available at the LHC and observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators. ATLAS was one of the two LHC experiments involved in the discovery of the Higgs boson in July 2012. It was also designed to search for evidence of theories of particle physics beyond the Standard Model.

<span class="mw-page-title-main">H1 (particle detector)</span>

H1 was a particle detector operated at the HERA collider at the German national laboratory DESY in Hamburg. The first studies for the H1 experiment were proposed in 1981. The H1 detector began operating together with HERA in 1992 and took data until 2007. It consisted of several different detector components, measured about 12 m × 15 m × 10 m and weighed 2800 tons. It was one of four detectors along the HERA accelerator.

<span class="mw-page-title-main">Large Electron–Positron Collider</span> Particle accelerator at CERN, Switzerland

The Large Electron–Positron Collider (LEP) was one of the largest particle accelerators ever constructed. It was built at CERN, a multi-national centre for research in nuclear and particle physics near Geneva, Switzerland.

A collider is a type of particle accelerator that brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators.

<span class="mw-page-title-main">Compact Linear Collider</span>

The Compact Linear Collider (CLIC) is a concept for a future linear particle accelerator that aims to explore the next energy frontier. CLIC would collide electrons with positrons and is currently the only mature option for a multi-TeV linear collider. The accelerator would be between 11 and 50 km long, more than ten times longer than the existing Stanford Linear Accelerator (SLAC) in California, USA. CLIC is proposed to be built at CERN, across the border between France and Switzerland near Geneva, with first beams starting by the time the Large Hadron Collider (LHC) has finished operations around 2035.

<span class="mw-page-title-main">Super Proton Synchrotron</span> Particle accelerator at CERN, Switzerland

The Super Proton Synchrotron (SPS) is a particle accelerator of the synchrotron type at CERN. It is housed in a circular tunnel, 6.9 kilometres (4.3 mi) in circumference, straddling the border of France and Switzerland near Geneva, Switzerland.

<span class="mw-page-title-main">Microcosm (CERN)</span> Museum at CERN in Meyrin (Switzerland)

Microcosm or CERN Museum was an interactive exhibition presenting the work of the CERN particle physics laboratory and its flagship accelerator the Large Hadron Collider (LHC). It first opened to the public in 1990 and closed permanently in September 2022, to be replaced by the Science Gateway in 2023. The final version of the exhibition opened in January 2016, developed by CERN in collaboration with Spanish design team Indissoluble.

<span class="mw-page-title-main">LHCb experiment</span> Experiment at the Large Hadron Collider

<span class="mw-page-title-main">ALICE experiment</span> Detector experiments at the Large Hadron Collider

<span class="mw-page-title-main">Intersecting Storage Rings</span> Particle accelerator at CERN, Switzerland

The ISR was a particle accelerator at CERN. It was the world's first hadron collider, and ran from 1971 to 1984, with a maximum center of mass energy of 62 GeV. From its initial startup, the collider itself had the capability to produce particles like the J/ψ and the upsilon, as well as observable jet structure; however, the particle detector experiments were not configured to observe events with large momentum transverse to the beamline, leaving these discoveries to be made at other experiments in the mid-1970s. Nevertheless, the construction of the ISR involved many advances in accelerator physics, including the first use of stochastic cooling, and it held the record for luminosity at a hadron collider until surpassed by the Tevatron in 2004.

<span class="mw-page-title-main">Proton Synchrotron Booster</span> CERN particle accelerator

The Proton Synchrotron Booster (PSB) is the first and smallest circular proton accelerator in the accelerator chain at the CERN injection complex, which also provides beams to the Large Hadron Collider. It contains four superimposed rings with a radius of 25 meters, which receive protons with an energy of 160 MeV from the linear accelerator Linac4 and accelerate them up to 2.0 GeV, ready to be injected into the Proton Synchrotron (PS). Before the PSB was built in 1972, Linac 1 injected directly into the Proton Synchrotron, but the increased injection energy provided by the booster allowed for more protons to be injected into the PS and a higher luminosity at the end of the accelerator chain.

The ATLAS Forward Proton Project is a project at the ATLAS experiment at the Large Hadron Collider to detect protons in its forward area. It began with research and development in 2004 and was approved in 2015.

<span class="mw-page-title-main">CERN Hadron Linacs</span> Group of particle accelerators

The CERN Hadron Linacs are linear accelerators that accelerate beams of hadrons from a standstill to be used by the larger circular accelerators at the facility.

<span class="mw-page-title-main">LHeC</span> Accelerator study for a possible upgrade of the existing LHC storage ring

The Large Hadron Electron Collider (LHeC) is an accelerator study for a possible upgrade of the existing LHC storage ring - the currently highest energy proton accelerator operating at CERN in Geneva. By adding to the proton accelerator ring a new electron accelerator, the LHeC would enable the investigation of electron-proton and electron-ion collisions at unprecedented high energies and rate, much higher than had been possible at the electron-proton collider HERA at DESY at Hamburg, which terminated its operation in 2007. The LHeC has therefore a unique program of research, as on the substructure of the proton and nuclei or the physics of the newly discovered Higgs boson. It is an electron–ion collider, similar to the plans in the US and elsewhere, although the present design would not include polarized protons.

<span class="mw-page-title-main">Future Circular Collider</span> Proposed post-LHC particle accelerator at CERN, Geneva, Switzerland

The Future Circular Collider (FCC) is a proposed particle accelerator with an energy significantly above that of previous circular colliders, such as the Super Proton Synchrotron, the Tevatron, and the Large Hadron Collider (LHC). The FCC project is considering three scenarios for collision types: FCC-hh, for hadron-hadron collisions, including proton-proton and heavy ion collisions, FCC-ee, for electron-positron collisions, and FCC-eh, for electron-hadron collisions.

<span class="mw-page-title-main">Super Proton–Antiproton Synchrotron</span> Particle accelerator at CERN

The Super Proton–Antiproton Synchrotron was a particle accelerator that operated at CERN from 1981 to 1991. To operate as a proton-antiproton collider the Super Proton Synchrotron (SPS) underwent substantial modifications, altering it from a one beam synchrotron to a two-beam collider. The main experiments at the accelerator were UA1 and UA2, where the W and Z bosons were discovered in 1983. Carlo Rubbia and Simon van der Meer received the 1984 Nobel Prize in Physics for their contributions to the SppS-project, which led to the discovery of the W and Z bosons. Other experiments conducted at the SppS were UA4, UA5 and UA8.

References

  1. "Oliver Brüning becomes the new HL-LHC project leader". CERN. Retrieved 22 April 2021.
  2. "Faces and places: Lucio Rossi is named 2013 IEEE fellow". CERN Courier. 53 (1): 37. January 2013.
  3. Rossi, Lucio (7 September 2018). "Lessons from the accelerator frontier". CERN Courier. Vol. 58, no. 7. pp. 5–6. Retrieved 24 February 2020.
  4. 1 2 "FP7 High Luminosity Large Hadron Collider Design Study: Grant agreement ID: 284404". CORDIS: EU research results. Retrieved 2 July 2021.
  5. "Status of the European Strategy for Particle Physics - CERN Document Server". cds.cern.ch. Retrieved 15 July 2021.
  6. 1 2 The HiLumi LHC Collaboration, ed. (2014). HL-LHC Preliminary Design Report: Deliverable: D1.5. HiLumiLHC.
  7. 1 2 3 4 5 Brüning, O.; Rossi, L. (17 December 2020). "Chapter 1: High-Luminosity Large Hadron Collider". CERN Yellow Reports: Monographs. 2020–010: 1–16. doi:10.23731/CYRM-2020-0010.1. ISSN   2519-8076.
  8. "A new schedule for the LHC and its successor". 13 December 2019.
  9. 1 2 3 4 Béjar Alonso, I.; Brüning, O.; Fessia, P.; Lamont, M.; Rossi, L.; Tavian, L.; Zerlauth, M. (17 December 2020). "High-Luminosity Large Hadron Collider (HL-LHC): Technical design report". CERN Yellow Reports: Monographs. CERN-2020-010: 378. doi:10.23731/CYRM-2020-0010.
  10. 1 2 3 4 5 6 7 Galan, F. Sanchez; Burkhardt, H.; Cerrutti, F.; Gaddi, A.; Grenard, J. L.; Krzempek, L.; Santos, M. Lino Diogo dos; Espinos, J. Perez; Raymond, M.; Diaz, P. Santos (17 December 2020). "Chapter 8: Collider-experiment interface". CERN Yellow Reports: Monographs. 2020–010: 169–188. doi:10.23731/CYRM-2020-0010.169. ISSN   2519-8076.
  11. Arduini, G.; Bruce, R.; Maria, R. De; Giovannozzi, M.; Iadarola, G.; Jowett, J.; Métral, E.; Papaphilippou, Y.; Garcia, R. Tomás (17 December 2020). "Chapter 2: Machine layout and performance". CERN Yellow Reports: Monographs. 2020–010: 17–46. doi:10.23731/CYRM-2020-0010.17. ISSN   2519-8076.
  12. Brüning, Oliver; Rossi, Lucio (April 2019). "The High-Luminosity Large Hadron Collider". Nature Reviews Physics. 1 (4): 241–243. Bibcode:2019NatRP...1..241B. doi:10.1038/s42254-019-0050-6. ISSN   2522-5820. S2CID   126892524.
  13. "SuperLHC IR optics collection". care-hhh.web.cern.ch. Retrieved 30 June 2021.
  14. 1 2 "CARE-HHH-APD LHC-LUMI-06 Workshop, Valencia, 16-20 October 2006". care-hhh.web.cern.ch. Retrieved 30 June 2021.
  15. Bordry, F.; Zimmermann, F. (2015). Chamonix 2014 Conclusions: Main Points and Actions. Geneva: CERN. doi:10.5170/cern-2015-002.1.
  16. ATLAS upgrade web page
  17. 1 2 CERN (3 December 2019). "CERN Yellow Reports: Monographs, Vol 7 (2019): Physics of the HL-LHC, and Perspectives at the HE-LHC": 70.24 MB. doi:10.23731/CYRM-2019-007.{{cite journal}}: Cite journal requires |journal= (help)
  18. "Report reveals full reach of LHC programme". CERN. Retrieved 14 June 2021.
  19. Schmidt, Burkhard (2016). "The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments". Journal of Physics: Conference Series. 706 (2): 022002. Bibcode:2016JPhCS.706b2002S. doi:10.1088/1742-6596/706/2/022002. S2CID   123769746.
  20. The HiLumi LHC Collaboration, ed. (2014). HL-LHC Preliminary Design Report: Deliverable: D1.5. HiLumiLHC.
  21. Apollinari, G; Béjar Alonso I; Brüning O; Lamont M; Rossi L (2015). "High-Luminosity Large Hadron Collider (HL-LHC) Preliminary Design Report". CERN Reports. 2015–005. doi:10.5170/CERN-2015-005.
  22. "HL-LHC magnets enter production in the US". CERN Courier. 13 January 2021. Retrieved 13 June 2021.
  23. Bermudez, Susana Izquierdo; Ambrosio, Giorgio; Apollinari, Giorgio; Bajko, Marta; Bordini, Bernardo; Bourcey, Nicolas; Ramos, Delio Duarte; Ferracin, Paolo; Fiscarelli, Lucio; Feher, Sandor; Fleiter, Jerome (August 2021). "Progress in the Development of the Nb 3 Sn MQXFB Quadrupole for the HiLumi Upgrade of the LHC". IEEE Transactions on Applied Superconductivity. 31 (5): 1–7. Bibcode:2021ITAS...3161352B. doi:10.1109/TASC.2021.3061352. ISSN   1051-8223. S2CID   232372971.
  24. "Taming the superconductors of tomorrow". CERN Courier. 11 May 2020. Retrieved 13 June 2021.
  25. Schoerling, Daniel; Zlobin, Alexander V., eds. (2019). "Nb3Sn Accelerator Magnets". Particle Acceleration and Detection. doi:10.1007/978-3-030-16118-7. ISBN   978-3-030-16117-0. ISSN   1611-1052. S2CID   239254870.
  26. 1 2 Todesco, E; Bajas, H; Bajko, M; Ballarino, A; Bermudez, S Izquierdo; Bordini, B; Bottura, L; De Rijk, G; Devred, A; Duarte Ramos, D; Duda, M (1 May 2021). "The High Luminosity LHC interaction region magnets towards series production". Superconductor Science and Technology. 34 (5): 053001. Bibcode:2021SuScT..34e3001T. doi:10.1088/1361-6668/abdba4. ISSN   0953-2048. S2CID   234160825.
  27. 1 2 3 4 5 "New technologies for the High-Luminosity LHC". CERN. Retrieved 13 June 2021.
  28. "Crab kicks for brighter collisions". CERN Courier. 19 April 2018. Retrieved 13 June 2021.
  29. 1 2 3 4 5 6 7 8 9 Brüning, Oliver; Rossi, Lucio (12 February 2015). "The High Luminosity Large Hadron Collider". Advanced Series on Directions in High Energy Physics. 24. doi:10.1142/9581. ISBN   978-981-4675-46-8. ISSN   1793-1339.
  30. 1 2 Damerau, H.; Funken, A.; Garoby, R.; Gilardoni, S.; Goddard, B.; Hanke, K.; Lombardi, A.; Manglunki, D.; Meddahi, M.; Mikulec, B.; Rumolo, G.; Shaposhnikova, E.; Vretenar, M.; Coupard, J. (2014). Damerau, Heiko; et al. (eds.). LHC Injectors Upgrade, Technical Design Report. Vol. v.1 : Protons. Geneva: CERN. doi:10.17181/CERN.7NHR.6HGC.
  31. 1 2 Coupard, Julie; Damerau, Heiko; Funken, Anne; Garoby, Roland; Gilardoni, Simone; Goddard, Brennan; Hanke, Klaus; Manglunki, Django; Meddahi, Malika; Rumolo, Giovanni; Scrivens, Richard; Chapochnikova, Elena (2016). Coupard, Julie; et al. (eds.). LHC Injectors Upgrade, Technical Design Report. Vol. v.2 : Ions. Geneva: CERN. doi:10.17181/CERN.L6VM.UOMS.
  32. "Linear accelerator 2". CERN. Retrieved 15 July 2021.
  33. Fink, D.A.; Kalvas, T.; Lettry, J.; Midttun, Ø.; Noll, D. (October 2018). "H − extraction systems for CERN's Linac4 H − ion source". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 904: 179–187. Bibcode:2018NIMPA.904..179F. doi:10.1016/j.nima.2018.07.046. S2CID   125196484.
  34. Shaposhnikova, Elena; Coupard, Julie; Damerau, Heiko; Funken, Anne; Gilardoni, Simone; Goddard, Brennan; Hanke, Klaus; Kobzeva, Lelyzaveta; Lombardi, Alessandra; Manglunki, Django; Mataguez, Simon (2016). Petit-Jean-Genaz Christine (Ed.), Kim, Dong Eon (Ed.), Kim, Kyung Sook (Ed.), Ko, In Soo (Ed.), Schaa, Volker RW (Ed.). "LHC Injectors Upgrade (LIU) Project at CERN". Proceedings of the 7th Int. Particle Accelerator Conf. IPAC2016: 4 pages, 0.522 MB. doi:10.18429/JACOW-IPAC2016-MOPOY059.
  35. Bellodi, G. (12 December 2017). "SOURCE AND LINAC3 STUDIES". CERN Proceedings. 2: 113. doi:10.23727/CERN-PROCEEDINGS-2017-002.113.
  36. "New schedule for CERN's accelerators and experiments". CERN. Retrieved 13 June 2021.
  37. "Snowmass21 documents". www.snowmass21.org. Retrieved 13 June 2021.
  38. Staelens, Michael (13 October 2019). "Recent Results and Future Plans of the MoEDAL Experiment". arXiv: 1910.05772 [hep-ex].
  39. "SND@LHC - Scattering and Neutrino Detector at the LHC - CERN Document Server". cds.cern.ch. Retrieved 2 July 2021.
  40. CMS Collaboration (3 March 2021). "The CMS Precision Proton Spectrometer at the HL-LHC -- Expression of Interest". arXiv: 2103.02752 [physics.ins-det].