Hopf algebra

Last updated

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an (unital associative) algebra and a (counital coassociative) coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

Contents

Hopf algebras occur naturally in algebraic topology, where they originated and are related to the H-space concept, in group scheme theory, in group theory (via the concept of a group ring), and in numerous other places, making them probably the most familiar type of bialgebra. Hopf algebras are also studied in their own right, with much work on specific classes of examples on the one hand and classification problems on the other. They have diverse applications ranging from condensed-matter physics and quantum field theory [1] to string theory [2] and LHC phenomenology. [3]

Formal definition

Formally, a Hopf algebra is an (associative and coassociative) bialgebra H over a field K together with a K-linear map S: HH (called the antipode) such that the following diagram commutes:

Hopf algebra.svg

Here Δ is the comultiplication of the bialgebra, ∇ its multiplication, η its unit and ε its counit. In the sumless Sweedler notation, this property can also be expressed as

As for algebras, one can replace the underlying field K with a commutative ring R in the above definition. [4]

The definition of Hopf algebra is self-dual (as reflected in the symmetry of the above diagram), so if one can define a dual of H (which is always possible if H is finite-dimensional), then it is automatically a Hopf algebra. [5]

Structure constants

Fixing a basis for the underlying vector space, one may define the algebra in terms of structure constants for multiplication:

for co-multiplication:

and the antipode:

Associativity then requires that

while co-associativity requires that

The connecting axiom requires that

Properties of the antipode

The antipode S is sometimes required to have a K-linear inverse, which is automatic in the finite-dimensional case[ clarification needed ], or if H is commutative or cocommutative (or more generally quasitriangular).

In general, S is an antihomomorphism, [6] so S2 is a homomorphism, which is therefore an automorphism if S was invertible (as may be required).

If S2 = idH, then the Hopf algebra is said to be involutive (and the underlying algebra with involution is a *-algebra). If H is finite-dimensional semisimple over a field of characteristic zero, commutative, or cocommutative, then it is involutive.

If a bialgebra B admits an antipode S, then S is unique ("a bialgebra admits at most 1 Hopf algebra structure"). [7] Thus, the antipode does not pose any extra structure which we can choose: Being a Hopf algebra is a property of a bialgebra.

The antipode is an analog to the inversion map on a group that sends g to g−1. [8]

Hopf subalgebras

A subalgebra A of a Hopf algebra H is a Hopf subalgebra if it is a subcoalgebra of H and the antipode S maps A into A. In other words, a Hopf subalgebra A is a Hopf algebra in its own right when the multiplication, comultiplication, counit and antipode of H are restricted to A (and additionally the identity 1 of H is required to be in A). The Nichols–Zoeller freeness theorem of Warren Nichols and Bettina Zoeller (1989) established that the natural A-module H is free of finite rank if H is finite-dimensional: a generalization of Lagrange's theorem for subgroups. [9] As a corollary of this and integral theory, a Hopf subalgebra of a semisimple finite-dimensional Hopf algebra is automatically semisimple.

A Hopf subalgebra A is said to be right normal in a Hopf algebra H if it satisfies the condition of stability, adr(h)(A) ⊆ A for all h in H, where the right adjoint mapping adr is defined by adr(h)(a) = S(h(1))ah(2) for all a in A, h in H. Similarly, a Hopf subalgebra A is left normal in H if it is stable under the left adjoint mapping defined by adl(h)(a) = h(1)aS(h(2)). The two conditions of normality are equivalent if the antipode S is bijective, in which case A is said to be a normal Hopf subalgebra.

A normal Hopf subalgebra A in H satisfies the condition (of equality of subsets of H): HA+ = A+H where A+ denotes the kernel of the counit on A. This normality condition implies that HA+ is a Hopf ideal of H (i.e. an algebra ideal in the kernel of the counit, a coalgebra coideal and stable under the antipode). As a consequence one has a quotient Hopf algebra H/HA+ and epimorphism HH/A+H, a theory analogous to that of normal subgroups and quotient groups in group theory. [10]

Hopf orders

A Hopf orderO over an integral domain R with field of fractions K is an order in a Hopf algebra H over K which is closed under the algebra and coalgebra operations: in particular, the comultiplication Δ maps O to OO. [11]

Group-like elements

A group-like element is a nonzero element x such that Δ(x) = xx. The group-like elements form a group with inverse given by the antipode. [12] A primitive element x satisfies Δ(x) = x⊗1 + 1⊗x. [13] [14]

Examples

Depending onComultiplicationCounitAntipodeCommutativeCocommutativeRemarks
group algebra KG group GΔ(g) = gg for all g in Gε(g) = 1 for all g in GS(g) = g−1 for all g in Gif and only if G is abelianyes
functions f from a finite [lower-alpha 1] group to K, KG (with pointwise addition and multiplication)finite group GΔ(f)(x,y) = f(xy)ε(f) = f(1G)S(f)(x) = f(x−1)yesif and only if G is abelian
Representative functions on a compact group compact group GΔ(f)(x,y) = f(xy)ε(f) = f(1G)S(f)(x) = f(x−1)yesif and only if G is abelianConversely, every commutative involutive reduced Hopf algebra over C with a finite Haar integral arises in this way, giving one formulation of Tannaka–Krein duality. [15]
Regular functions on an algebraic group Δ(f)(x,y) = f(xy)ε(f) = f(1G)S(f)(x) = f(x−1)yesif and only if G is abelianConversely, every commutative Hopf algebra over a field arises from a group scheme in this way, giving an antiequivalence of categories. [16]
Tensor algebra T(V) vector space VΔ(x) = x ⊗ 1 + 1 ⊗ x, x in V, Δ(1) = 1 ⊗ 1ε(x) = 0S(x) = −x for all x in 'T1(V) (and extended to higher tensor powers)If and only if dim(V)=0,1yes symmetric algebra and exterior algebra (which are quotients of the tensor algebra) are also Hopf algebras with this definition of the comultiplication, counit and antipode
Universal enveloping algebra U(g) Lie algebra gΔ(x) = x ⊗ 1 + 1 ⊗ x for every x in g (this rule is compatible with commutators and can therefore be uniquely extended to all of U)ε(x) = 0 for all x in g (again, extended to U)S(x) = −xif and only if g is abelianyes
Sweedler's Hopf algebra H=K[c, x]/c2 = 1, x2 = 0 and xc = −cx.K is a field with characteristic different from 2Δ(c) = cc, Δ(x) = cx + x ⊗ 1, Δ(1) = 1 ⊗ 1ε(c) = 1 and ε(x) = 0S(c) = c−1 = c and S(x) = −cxnonoThe underlying vector space is generated by {1, c, x, cx} and thus has dimension 4. This is the smallest example of a Hopf algebra that is both non-commutative and non-cocommutative.
ring of symmetric functions [17] in terms of complete homogeneous symmetric functions hk (k 1):

Δ(hk) = 1 ⊗ hk + h1hk−1 + ... + hk−1h1 + hk ⊗ 1.

ε(hk) = 0S(hk) = (−1)kekyesyes

Note that functions on a finite group can be identified with the group ring, though these are more naturally thought of as dual – the group ring consists of finite sums of elements, and thus pairs with functions on the group by evaluating the function on the summed elements.

Cohomology of Lie groups

The cohomology algebra (over a field ) of a Lie group is a Hopf algebra: the multiplication is provided by the cup product, and the comultiplication

by the group multiplication . This observation was actually a source of the notion of Hopf algebra. Using this structure, Hopf proved a structure theorem for the cohomology algebra of Lie groups.

Theorem (Hopf) [18] Let be a finite-dimensional, graded commutative, graded cocommutative Hopf algebra over a field of characteristic 0. Then (as an algebra) is a free exterior algebra with generators of odd degree.

Quantum groups and non-commutative geometry

Most examples above are either commutative (i.e. the multiplication is commutative) or co-commutative (i.e. [19] Δ = T ∘ Δ where the twist map [20] T: HHHH is defined by T(xy) = yx). Other interesting Hopf algebras are certain "deformations" or "quantizations" of those from example 3 which are neither commutative nor co-commutative. These Hopf algebras are often called quantum groups , a term that is so far only loosely defined. They are important in noncommutative geometry, the idea being the following: a standard algebraic group is well described by its standard Hopf algebra of regular functions; we can then think of the deformed version of this Hopf algebra as describing a certain "non-standard" or "quantized" algebraic group (which is not an algebraic group at all). While there does not seem to be a direct way to define or manipulate these non-standard objects, one can still work with their Hopf algebras, and indeed one identifies them with their Hopf algebras. Hence the name "quantum group".

Representation theory

Let A be a Hopf algebra, and let M and N be A-modules. Then, MN is also an A-module, with

for mM, nN and Δ(a) = (a1, a2). Furthermore, we can define the trivial representation as the base field K with

for mK. Finally, the dual representation of A can be defined: if M is an A-module and M* is its dual space, then

where fM* and mM.

The relationship between Δ, ε, and S ensure that certain natural homomorphisms of vector spaces are indeed homomorphisms of A-modules. For instance, the natural isomorphisms of vector spaces MMK and MKM are also isomorphisms of A-modules. Also, the map of vector spaces M*MK with fmf(m) is also a homomorphism of A-modules. However, the map MM*K is not necessarily a homomorphism of A-modules.

Graded Hopf algebras are often used in algebraic topology: they are the natural algebraic structure on the direct sum of all homology or cohomology groups of an H-space.

Locally compact quantum groups generalize Hopf algebras and carry a topology. The algebra of all continuous functions on a Lie group is a locally compact quantum group.

Quasi-Hopf algebras are generalizations of Hopf algebras, where coassociativity only holds up to a twist. They have been used in the study of the Knizhnik–Zamolodchikov equations. [21]

Multiplier Hopf algebras introduced by Alfons Van Daele in 1994 [22] are generalizations of Hopf algebras where comultiplication from an algebra (with or without unit) to the multiplier algebra of tensor product algebra of the algebra with itself.

Hopf group-(co)algebras introduced by V. G. Turaev in 2000 are also generalizations of Hopf algebras.

Weak Hopf algebras

Weak Hopf algebras, or quantum groupoids, are generalizations of Hopf algebras. Like Hopf algebras, weak Hopf algebras form a self-dual class of algebras; i.e., if H is a (weak) Hopf algebra, so is H*, the dual space of linear forms on H (with respect to the algebra-coalgebra structure obtained from the natural pairing with H and its coalgebra-algebra structure). A weak Hopf algebra H is usually taken to be a

for all a, b, and c in H.
  1. for all a in H (the right-hand side is the interesting projection usually denoted by ΠR(a) or εs(a) with image a separable subalgebra denoted by HR or Hs);
  2. for all a in H (another interesting projection usually denoted by ΠR(a) or εt(a) with image a separable algebra HL or Ht, anti-isomorphic to HL via S);
  3. for all a in H.
Note that if Δ(1) = 1 ⊗ 1, these conditions reduce to the two usual conditions on the antipode of a Hopf algebra.

The axioms are partly chosen so that the category of H-modules is a rigid monoidal category. The unit H-module is the separable algebra HL mentioned above.

For example, a finite groupoid algebra is a weak Hopf algebra. In particular, the groupoid algebra on [n] with one pair of invertible arrows eij and eji between i and j in [n] is isomorphic to the algebra H of n x n matrices. The weak Hopf algebra structure on this particular H is given by coproduct Δ(eij) = eijeij, counit ε(eij) = 1 and antipode S(eij) = eji. The separable subalgebras HL and HR coincide and are non-central commutative algebras in this particular case (the subalgebra of diagonal matrices).

Early theoretical contributions to weak Hopf algebras are to be found in [23] as well as [24]

Hopf algebroids

See Hopf algebroid

Analogy with groups

Groups can be axiomatized by the same diagrams (equivalently, operations) as a Hopf algebra, where G is taken to be a set instead of a module. In this case:

In this philosophy, a group can be thought of as a Hopf algebra over the "field with one element". [25]

Hopf algebras in braided monoidal categories

The definition of Hopf algebra is naturally extended to arbitrary braided monoidal categories. [26] [27] A Hopf algebra in such a category is a sextuple where is an object in , and

(multiplication),
(unit),
(comultiplication),
(counit),
(antipode)

— are morphisms in such that

1) the triple is a monoid in the monoidal category , i.e. the following diagrams are commutative: [lower-alpha 2]

Minoid.png

2) the triple is a comonoid in the monoidal category , i.e. the following diagrams are commutative: [lower-alpha 2]

Cominoid.png

3) the structures of monoid and comonoid on are compatible: the multiplication and the unit are morphisms of comonoids, and (this is equivalent in this situation) at the same time the comultiplication and the counit are morphisms of monoids; this means that the following diagrams must be commutative:

Multiplication-comultiplication.png

Unit-counit.png

Uinit-counit-1.png

where is the left unit morphism in , and the natural transformation of functors which is unique in the class of natural transformations of functors composed from the structural transformations (associativity, left and right units, transposition, and their inverses) in the category .

The quintuple with the properties 1),2),3) is called a bialgebra in the category ;


4) the diagram of antipode is commutative:

Antipode-1.png

The typical examples are the following.

See also

Notes and references

Notes

  1. The finiteness of G implies that KGKG is naturally isomorphic to KGxG. This is used in the above formula for the comultiplication. For infinite groups G, KGKG is a proper subset of KGxG. In this case the space of functions with finite support can be endowed with a Hopf algebra structure.
  2. 1 2 Here , , are the natural transformations of associativity, and of the left and the right units in the monoidal category .

Citations

  1. Haldane, F. D. M.; Ha, Z. N. C.; Talstra, J. C.; Bernard, D.; Pasquier, V. (1992). "Yangian symmetry of integrable quantum chains with long-range interactions and a new description of states in conformal field theory". Physical Review Letters. 69 (14): 2021–2025. Bibcode:1992PhRvL..69.2021H. doi:10.1103/physrevlett.69.2021. PMID   10046379.
  2. Plefka, J.; Spill, F.; Torrielli, A. (2006). "Hopf algebra structure of the AdS/CFT S-matrix". Physical Review D. 74 (6): 066008. arXiv: hep-th/0608038 . Bibcode:2006PhRvD..74f6008P. doi:10.1103/PhysRevD.74.066008. S2CID   2370323.
  3. Abreu, Samuel; Britto, Ruth; Duhr, Claude; Gardi, Einan (2017-12-01). "Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case". Journal of High Energy Physics. 2017 (12): 90. arXiv: 1704.07931 . Bibcode:2017JHEP...12..090A. doi:10.1007/jhep12(2017)090. ISSN   1029-8479. S2CID   54981897.
  4. Underwood 2011 , p. 55
  5. Underwood 2011 , p. 62
  6. Dăscălescu, Năstăsescu & Raianu (2001). "Prop. 4.2.6". Hopf Algebra: An Introduction. p. 153.
  7. Dăscălescu, Năstăsescu & Raianu (2001). "Remarks 4.2.3". Hopf Algebra: An Introduction. p. 151.
  8. Quantum groups lecture notes
  9. Nichols, Warren D.; Zoeller, M. Bettina (1989), "A Hopf algebra freeness theorem", American Journal of Mathematics , 111 (2): 381–385, doi:10.2307/2374514, JSTOR   2374514, MR   0987762
  10. Montgomery 1993 , p. 36
  11. Underwood 2011 , p. 82
  12. Hazewinkel, Michiel; Gubareni, Nadezhda Mikhaĭlovna; Kirichenko, Vladimir V. (2010). Algebras, Rings, and Modules: Lie Algebras and Hopf Algebras. Mathematical surveys and monographs. Vol. 168. American Mathematical Society. p. 149. ISBN   978-0-8218-7549-0.
  13. Mikhalev, Aleksandr Vasilʹevich; Pilz, Günter, eds. (2002). The Concise Handbook of Algebra. Springer-Verlag. p. 307, C.42. ISBN   978-0792370727.
  14. Abe, Eiichi (2004). Hopf Algebras. Cambridge Tracts in Mathematics. Vol. 74. Cambridge University Press. p. 59. ISBN   978-0-521-60489-5.
  15. Hochschild, G (1965), Structure of Lie groups, Holden-Day, pp. 14–32
  16. Jantzen, Jens Carsten (2003), Representations of algebraic groups, Mathematical Surveys and Monographs, vol. 107 (2nd ed.), Providence, R.I.: American Mathematical Society, ISBN   978-0-8218-3527-2 , section 2.3
  17. See Hazewinkel, Michiel (January 2003). "Symmetric Functions, Noncommutative Symmetric Functions, and Quasisymmetric Functions". Acta Applicandae Mathematicae. 75 (1–3): 55–83. arXiv: math/0410468 . doi:10.1023/A:1022323609001. S2CID   189899056.
  18. Hopf, Heinz (1941). "Über die Topologie der Gruppen–Mannigfaltigkeiten und ihre Verallgemeinerungen". Ann. of Math. 2 (in German). 42 (1): 22–52. doi:10.2307/1968985. JSTOR   1968985.
  19. Underwood 2011 , p. 57
  20. Underwood 2011 , p. 36
  21. Montgomery 1993 , p. 203
  22. Van Daele, Alfons (1994). "Multiplier Hopf algebras" (PDF). Transactions of the American Mathematical Society. 342 (2): 917–932. doi: 10.1090/S0002-9947-1994-1220906-5 .
  23. Böhm, Gabriella; Nill, Florian; Szlachanyi, Kornel (1999). "Weak Hopf Algebras". J. Algebra. 221 (2): 385–438. arXiv: math/9805116 . doi:10.1006/jabr.1999.7984. S2CID   14889155.
  24. Nikshych, Dmitri; Vainerman, Leonid (2002). "Finite groupoids and their applications". In Montgomery, S.; Schneider, H.-J. (eds.). New directions in Hopf algebras. Vol. 43. Cambridge: M.S.R.I. Publications. pp. 211–262. ISBN   9780521815123.
  25. Group = Hopf algebra « Secret Blogging Seminar, Group objects and Hopf algebras, video of Simon Willerton.
  26. Turaev & Virelizier 2017, 6.2.
  27. Akbarov 2009, p. 482.
  28. 1 2 Akbarov 2003, 10.3.
  29. Akbarov 2009.

Related Research Articles

In mathematics, coalgebras or cogebras are structures that are dual to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions.

In mathematics, a bialgebra over a field K is a vector space over K which is both a unital associative algebra and a counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are coalgebra morphisms.

<span class="mw-page-title-main">Quantum group</span> Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

In mathematics, the tensor algebra of a vector space V, denoted T(V) or T(V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property (see below).

In abstract algebra, a representation of a Hopf algebra is a representation of its underlying associative algebra. That is, a representation of a Hopf algebra H over a field K is a K-vector space V with an action H × VV usually denoted by juxtaposition ( that is, the image of (h,v) is written hv ). The vector space V is called an H-module.

In mathematics, a comodule or corepresentation is a concept dual to a module. The definition of a comodule over a coalgebra is formed by dualizing the definition of a module over an associative algebra.

In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.

In mathematics, a Hopf algebra, H, is quasitriangular if there exists an invertible element, R, of such that

In mathematics, compact quantum groups are generalisations of compact groups, where the commutative -algebra of continuous complex-valued functions on a compact group is generalised to an abstract structure on a not-necessarily commutative unital -algebra, which plays the role of the "algebra of continuous complex-valued functions on the compact quantum group".

In mathematics, quasi-bialgebras are a generalization of bialgebras: they were first defined by the Ukrainian mathematician Vladimir Drinfeld in 1990. A quasi-bialgebra differs from a bialgebra by having coassociativity replaced by an invertible element which controls the non-coassociativity. One of their key properties is that the corresponding category of modules forms a tensor category.

A quasi-Hopf algebra is a generalization of a Hopf algebra, which was defined by the Russian mathematician Vladimir Drinfeld in 1989.

A ribbon Hopf algebra is a quasitriangular Hopf algebra which possess an invertible central element more commonly known as the ribbon element, such that the following conditions hold:

In mathematics, a braided Hopf algebra is a Hopf algebra in a braided monoidal category. The most common braided Hopf algebras are objects in a Yetter–Drinfeld category of a Hopf algebra H, particularly the Nichols algebra of a braided vector space in that category.

In mathematics, the Butcher group, named after the New Zealand mathematician John C. Butcher by Hairer & Wanner (1974), is an infinite-dimensional Lie group first introduced in numerical analysis to study solutions of non-linear ordinary differential equations by the Runge–Kutta method. It arose from an algebraic formalism involving rooted trees that provides formal power series solutions of the differential equation modeling the flow of a vector field. It was Cayley (1857), prompted by the work of Sylvester on change of variables in differential calculus, who first noted that the derivatives of a composition of functions can be conveniently expressed in terms of rooted trees and their combinatorics.

In mathematics, Schur algebras, named after Issai Schur, are certain finite-dimensional algebras closely associated with Schur–Weyl duality between general linear and symmetric groups. They are used to relate the representation theories of those two groups. Their use was promoted by the influential monograph of J. A. Green first published in 1980. The name "Schur algebra" is due to Green. In the modular case Schur algebras were used by Gordon James and Karin Erdmann to show that the problems of computing decomposition numbers for general linear groups and symmetric groups are actually equivalent. Schur algebras were used by Friedlander and Suslin to prove finite generation of cohomology of finite group schemes.

In mathematics, in the theory of Hopf algebras, a Hopf algebroid is a generalisation of weak Hopf algebras, certain skew Hopf algebras and commutative Hopf k-algebroids. If k is a field, a commutative k-algebroid is a cogroupoid object in the category of k-algebras; the category of such is hence dual to the category of groupoid k-schemes. This commutative version has been used in 1970-s in algebraic geometry and stable homotopy theory. The generalization of Hopf algebroids and its main part of the structure, associative bialgebroids, to the noncommutative base algebra was introduced by J.-H. Lu in 1996 as a result on work on groupoids in Poisson geometry. They may be loosely thought of as Hopf algebras over a noncommutative base ring, where weak Hopf algebras become Hopf algebras over a separable algebra. It is a theorem that a Hopf algebroid satisfying a finite projectivity condition over a separable algebra is a weak Hopf algebra, and conversely a weak Hopf algebra H is a Hopf algebroid over its separable subalgebra HL. The antipode axioms have been changed by G. Böhm and K. Szlachányi in 2004 for tensor categorical reasons and to accommodate examples associated to depth two Frobenius algebra extensions.

In mathematics, weak bialgebras are a generalization of bialgebras that are both algebras and coalgebras but for which the compatibility conditions between the two structures have been "weakened". In the same spirit, weak Hopf algebras are weak bialgebras together with a linear map S satisfying specific conditions; they are generalizations of Hopf algebras.

In mathematics, if is an associative algebra over some ground field k, then a left associative -bialgebroid is another associative k-algebra together with the following additional maps: an algebra map called the source map, an algebra map called the target map, so that the elements of the images of and commute in , therefore inducing an -bimodule structure on via the rule for ; an -bimodule morphism which is required to be a counital coassociative comultiplication on in the monoidal category of -bimodules with monoidal product .

In algebraic topology, through an algebraic operation (dualization), there is an associated commutative algebra from the noncommutative Steenrod algebras called the dual Steenrod algebra. This dual algebra has a number of surprising benefits, such as being commutative and provided technical tools for computing the Adams spectral sequence in many cases with much ease.

In quantum group and Hopf algebra, the bicrossed product is a process to create new Hopf algebras from the given ones. It's motivated by the Zappa–Szép product of groups. It was first discussed by M. Takeuchi in 1981, and now a general tool for construction of Drinfeld quantum double.

References