Weak Hopf algebra

Last updated

In mathematics, weak bialgebras are a generalization of bialgebras that are both algebras and coalgebras but for which the compatibility conditions between the two structures have been "weakened". In the same spirit, weak Hopf algebras are weak bialgebras together with a linear map S satisfying specific conditions; they are generalizations of Hopf algebras.

Contents

These objects were introduced by Böhm, Nill and Szlachányi. The first motivations for studying them came from quantum field theory and operator algebras. [1] Weak Hopf algebras have quite interesting representation theory; in particular modules over a semisimple finite weak Hopf algebra is a fusion category (which is a monoidal category with extra properties). It was also shown by Etingof, Nikshych and Ostrik that any fusion category is equivalent to a category of modules over a weak Hopf algebra. [2]

Definition

A weak bialgebra over a field is a vector space such that

for which the following compatibility conditions hold :

  1. Multiplicativity of the Comultiplication :
    ,
  2. Weak Multiplicativity of the Counit :
    ,
  3. Weak Comultiplicativity of the Unit :
    ,

where flips the two tensor factors. Moreover is the opposite multiplication and is the opposite comultiplication. Note that we also implicitly use Mac Lane's coherence theorem for the monoidal category of vector spaces, identifying as well as .

The definition weakens the compatibility between the algebra and coalgebra structures of a bialgebra. More specifically, the unit and counit are weakened. This remains true in the axioms of a weak Hopf algebra.

A weak Hopf algebra is a weak bialgebra with a linear map , called the antipode, that satisfies:

Examples

  1. Hopf algebra. Of course any Hopf algebra is a weak Hopf algebra.
  2. Groupoid algebra. Suppose is a groupoid and let be the groupoid algebra, in other words, the algebra generated by the morphisms . This becomes a weak Hopf algebra if we define
    • .

Note that this second example is a weak Hopf algebra but not a Hopf algebra.

Representation theory

Let H be a semisimple finite weak Hopf algebra, then modules over H form a semisimple rigid monoidal category with finitely many simple objects. Moreover the homomorphisms spaces are finite-dimensional vector spaces and the endomorphisms space of simple objects are one-dimensional. Finally, the monoidal unit is a simple object. Such a category is called a fusion category.

It can be shown that some monoidal category are not modules over a Hopf algebra. In the case of fusion categories (which are just monoidal categories with extra conditions), it was proved by Etingof, Nikshych and Ostrik that any fusion category is equivalent to a category of modules over a weak Hopf algebra.

Notes

  1. Böhm, Nill, Szlachányi. p. 387
  2. Etingof, Nikshych and Ostrik, Cor. 2.22

Related Research Articles

In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

In mathematics, coalgebras or cogebras are structures that are dual to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions.

In mathematics, a bialgebra over a field K is a vector space over K which is both a unital associative algebra and a counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are coalgebra morphisms.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

<span class="mw-page-title-main">Quantum group</span> Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

In mathematics, the tensor algebra of a vector space V, denoted T(V) or T(V), is the algebra of tensors on V with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property.

In abstract algebra, a representation of a Hopf algebra is a representation of its underlying associative algebra. That is, a representation of a Hopf algebra H over a field K is a K-vector space V with an action H × VV usually denoted by juxtaposition. The vector space V is called an H-module.

In mathematics, a comodule or corepresentation is a concept dual to a module. The definition of a comodule over a coalgebra is formed by dualizing the definition of a module over an associative algebra.

In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.

In category theory, a monoidal monad is a monad on a monoidal category such that the functor is a lax monoidal functor and the natural transformations and are monoidal natural transformations. In other words, is equipped with coherence maps and satisfying certain properties, and the unit and multiplication are monoidal natural transformations. By monoidality of , the morphisms and are necessarily equal.

In mathematics, quasi-bialgebras are a generalization of bialgebras: they were first defined by the Ukrainian mathematician Vladimir Drinfeld in 1990. A quasi-bialgebra differs from a bialgebra by having coassociativity replaced by an invertible element which controls the non-coassociativity. One of their key properties is that the corresponding category of modules forms a tensor category.

In category theory, a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the category having finite-dimensional vector spaces as objects and linear maps as morphisms, with tensor product as the monoidal structure. Another example is Rel, the category having sets as objects and relations as morphisms, with Cartesian monoidal structure.

In category theory, a branch of mathematics, dagger compact categories first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations. They also appeared in the work of John Baez and James Dolan as an instance of semistrict k-tuply monoidal n-categories, which describe general topological quantum field theories, for n = 1 and k = 3. They are a fundamental structure in Samson Abramsky and Bob Coecke's categorical quantum mechanics.

In mathematics a Yetter–Drinfeld category is a special type of braided monoidal category. It consists of modules over a Hopf algebra which satisfy some additional axioms.

In mathematics, a braided Hopf algebra is a Hopf algebra in a braided monoidal category. The most common braided Hopf algebras are objects in a Yetter–Drinfeld category of a Hopf algebra H, particularly the Nichols algebra of a braided vector space in that category.

In physics and mathematics, the κ-Poincaré group, named after Henri Poincaré, is a quantum group, obtained by deformation of the Poincaré group into a Hopf algebra. It is generated by the elements and with the usual constraint:

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Centuries passed before more extensive trigonometric tables were created. One such table is the Canon Sinuum created at the end of the 16th century.

In mathematics, in the theory of Hopf algebras, a Hopf algebroid is a generalisation of weak Hopf algebras, certain skew Hopf algebras and commutative Hopf k-algebroids. If k is a field, a commutative k-algebroid is a cogroupoid object in the category of k-algebras; the category of such is hence dual to the category of groupoid k-schemes. This commutative version has been used in 1970-s in algebraic geometry and stable homotopy theory. The generalization of Hopf algebroids and its main part of the structure, associative bialgebroids, to the noncommutative base algebra was introduced by J.-H. Lu in 1996 as a result on work on groupoids in Poisson geometry. They may be loosely thought of as Hopf algebras over a noncommutative base ring, where weak Hopf algebras become Hopf algebras over a separable algebra. It is a theorem that a Hopf algebroid satisfying a finite projectivity condition over a separable algebra is a weak Hopf algebra, and conversely a weak Hopf algebra H is a Hopf algebroid over its separable subalgebra HL. The antipode axioms have been changed by G. Böhm and K. Szlachányi in 2004 for tensor categorical reasons and to accommodate examples associated to depth two Frobenius algebra extensions.

In mathematics, if is an associative algebra over some ground field k, then a left associative -bialgebroid is another associative k-algebra together with the following additional maps: an algebra map called the source map, an algebra map called the target map, so that the elements of the images of and commute in , therefore inducing an -bimodule structure on via the rule for ; an -bimodule morphism which is required to be a counital coassociative comultiplication on in the monoidal category of -bimodules with monoidal product . The corresponding counit is required to be a left character. Furthermore, a compatibility between the comultiplication and multiplications on and on is required. For a noncommutative , the tensor square is not an algebra, hence asking for a bialgebra-like compatibility that is a morphism of k-algebras does not make sense. Instead, one requires that has a k-subspace which contains the image of and has a well-defined multiplication induced from its preimage under the projection from the usual tensor square algebra . Then one requires that the corestriction is a homomorphism of unital algebras. If it is a homomorphism for one such , one can make a canonical choice for , namely the so called Takeuchi's product , which always inherits an associative multiplication via the projection from . Thus, it is sufficient to check if the image of is contained in the Takeuchi's product rather than to look for other . As shown by Brzeziński and Militaru, the notion of a bialgebroid is equivalent to the notion of -algebra introduced by Takeuchi earlier, in 1977.

<span class="mw-page-title-main">Nodal decomposition</span>

In category theory, an abstract mathematical discipline, a nodal decomposition of a morphism is a representation of as a product , where is a strong epimorphism, a bimorphism, and a strong monomorphism.

References