Icosidodecahedron

Last updated
Icosidodecahedron
Icosidodecahedron.svg
(Click here for rotating model)
Type Archimedean solid
Uniform polyhedron
Elements F = 32, E = 60, V = 30 (χ = 2)
Faces by sides20{3}+12{5}
Conway notation aD
Schläfli symbols r{5,3}
t1{5,3}
Wythoff symbol 2 | 3 5
Coxeter diagram CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Symmetry group Ih, H3, [5,3], (*532), order 120
Rotation group I, [5,3]+, (532), order 60
Dihedral angle
References U 24, C 28, W 12
PropertiesSemiregular convex quasiregular
Polyhedron 12-20 max.png
Colored faces
Polyhedron 12-20 vertfig.svg
3.5.3.5
(Vertex figure)
Polyhedron 12-20 dual max.png
Rhombic triacontahedron
(dual polyhedron)
Polyhedron 12-20 net.svg
Net
3D model of an icosidodecahedron Icosidodecahedron.stl
3D model of an icosidodecahedron

In geometry, an icosidodecahedron is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.

Contents

Geometry

An icosidodecahedron has icosahedral symmetry, and its first stellation is the compound of a dodecahedron and its dual icosahedron, with the vertices of the icosidodecahedron located at the midpoints of the edges of either.

Its dual polyhedron is the rhombic triacontahedron. An icosidodecahedron can be split along any of six planes to form a pair of pentagonal rotundae, which belong among the Johnson solids.

The icosidodecahedron can be considered a pentagonal gyrobirotunda, as a combination of two rotundae (compare pentagonal orthobirotunda, one of the Johnson solids). In this form its symmetry is D5d, [10,2+], (2*5), order 20.

The wire-frame figure of the icosidodecahedron consists of six flat regular decagons, meeting in pairs at each of the 30 vertices.

The icosidodecahedron has 6 central decagons. Projected into a sphere, they define 6 great circles. Buckminster Fuller used these 6 great circles, along with 15 and 10 others in two other polyhedra to define his 31 great circles of the spherical icosahedron.

Cartesian coordinates

Convenient Cartesian coordinates for the vertices of an icosidodecahedron with unit edges are given by the even permutations of: [1]

where φ is the golden ratio, 1 + 5/2.

The long radius (center to vertex) of the icosidodecahedron is in the golden ratio to its edge length; thus its radius is φ if its edge length is 1, and its edge length is 1/φ if its radius is 1. Only a few uniform polytopes have this property, including the four-dimensional 600-cell, the three-dimensional icosidodecahedron, and the two-dimensional decagon. (The icosidodecahedron is the equatorial cross section of the 600-cell, and the decagon is the equatorial cross section of the icosidodecahedron.) These radially golden polytopes can be constructed, with their radii, from golden triangles which meet at the center, each contributing two radii and an edge.

Orthogonal projections

The icosidodecahedron has four special orthogonal projections, centered on a vertex, an edge, a triangular face, and a pentagonal face. The last two correspond to the A2 and H2 Coxeter planes.

Orthogonal projections
Centered byVertexEdgeFace
Triangle
Face
Pentagon
Solid Polyhedron 12-20 from blue max.png Polyhedron 12-20 from yellow max.png Polyhedron 12-20 from red max.png
Wireframe Dodecahedron t1 v.png Dodecahedron t1 e.png Dodecahedron t1 A2.png Dodecahedron t1 H3.png
Projective
symmetry
[2][2][6][10]
Dual Dual dodecahedron t1 v.png Dual dodecahedron t1 e.png Dual dodecahedron t1 A2.png Dual dodecahedron t1 H3.png

Surface area and volume

The surface area A and the volume V of the icosidodecahedron of edge length a are:

Spherical tiling

Polyhedron 12-20, davinci.png
Spherical icosidodecahedron with colored cicles.png
The 60 edges form 6 decagons corresponding to great circles in the spherical tiling.

The icosidodecahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

Uniform tiling 532-t1.png Icosidodecahedron stereographic projection pentagon.png
Pentagon-centered
Icosidodecahedron stereographic projection triangle.png
Triangle-centered
Orthographic projection Stereographic projections

The icosidodecahedron is a rectified dodecahedron and also a rectified icosahedron, existing as the full-edge truncation between these regular solids.

The icosidodecahedron contains 12 pentagons of the dodecahedron and 20 triangles of the icosahedron:

Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532)[5,3]+, (532)
Uniform polyhedron-53-t0.svg Uniform polyhedron-53-t01.svg Uniform polyhedron-53-t1.svg Uniform polyhedron-53-t12.svg Uniform polyhedron-53-t2.svg Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

The icosidodecahedron exists in a sequence of symmetries of quasiregular polyhedra and tilings with vertex configurations (3.n)2, progressing from tilings of the sphere to the Euclidean plane and into the hyperbolic plane. With orbifold notation symmetry of *n32 all of these tilings are wythoff construction within a fundamental domain of symmetry, with generator points at the right angle corner of the domain. [2] [3]

*n32 orbifold symmetries of quasiregular tilings: (3.n)2
Quasiregular fundamental domain.png
Construction
Spherical EuclideanHyperbolic
*332*432*532*632*732*832...*32
Quasiregular
figures
Uniform tiling 332-t1-1-.png Uniform tiling 432-t1.png Uniform tiling 532-t1.png Uniform tiling 63-t1.svg Triheptagonal tiling.svg H2-8-3-rectified.svg H2 tiling 23i-2.png
Vertex (3.3)2 (3.4)2 (3.5)2 (3.6)2 (3.7)2 (3.8)2 (3.)2
*5n2 symmetry mutations of quasiregular tilings: (5.n)2
Symmetry
*5n2
[n,5]
Spherical HyperbolicParacompactNoncompact
*352
[3,5]
*452
[4,5]
*552
[5,5]
*652
[6,5]
*752
[7,5]
*852
[8,5]...
*52
[,5]
 
[ni,5]
Figures Uniform tiling 532-t1.png H2-5-4-rectified.svg H2 tiling 255-2.png H2 tiling 256-2.png H2 tiling 257-2.png H2 tiling 258-2.png H2 tiling 25i-2.png
Config. (5.3)2 (5.4)2 (5.5)2 (5.6)2 (5.7)2 (5.8)2 (5.)2(5.ni)2
Rhombic
figures
Rhombictriacontahedron.svg H2-5-4-rhombic.svg H2-5-4-primal.svg Order-6-5 quasiregular rhombic tiling.png
Config. V(5.3)2 V(5.4)2 V(5.5)2 V(5.6)2V(5.7)2V(5.8)2V(5.)2V(5.)2

Dissection

The icosidodecahedron is related to the Johnson solid called a pentagonal orthobirotunda created by two pentagonal rotundae connected as mirror images. The icosidodecahedron can therefore be called a pentagonal gyrobirotunda with the gyration between top and bottom halves.

Dissected icosidodecahedron.png
(Dissection)
Icosidodecahedron.png
Icosidodecahedron
(pentagonal gyrobirotunda)
Pentagonal orthobirotunda solid.png
Pentagonal orthobirotunda
Pentagonal rotunda.png
Pentagonal rotunda
A topological icosidodecahedron in truncated cube, inserting 6 vertices in center of octagons, and dissecting them into 2 pentagons and 2 triangles. Icosidecahedron in truncated cube.png
A topological icosidodecahedron in truncated cube, inserting 6 vertices in center of octagons, and dissecting them into 2 pentagons and 2 triangles.

The truncated cube can be turned into an icosidodecahedron by dividing the octagons into two pentagons and two triangles. It has pyritohedral symmetry.

Eight uniform star polyhedra share the same vertex arrangement. Of these, two also share the same edge arrangement: the small icosihemidodecahedron (having the triangular faces in common), and the small dodecahemidodecahedron (having the pentagonal faces in common). The vertex arrangement is also shared with the compounds of five octahedra and of five tetrahemihexahedra.

Icosidodecahedron.png
Icosidodecahedron
Small icosihemidodecahedron.png
Small icosihemidodecahedron
Small dodecahemidodecahedron.png
Small dodecahemidodecahedron
Great icosidodecahedron.png
Great icosidodecahedron
Great dodecahemidodecahedron.png
Great dodecahemidodecahedron
Great icosihemidodecahedron.png
Great icosihemidodecahedron
Dodecadodecahedron.png
Dodecadodecahedron
Small dodecahemicosahedron.png
Small dodecahemicosahedron
Great dodecahemicosahedron.png
Great dodecahemicosahedron
Compound of five octahedra.png
Compound of five octahedra
UC18-5 tetrahemihexahedron.png
Compound of five tetrahemihexahedra

In four-dimensional geometry the icosidodecahedron appears in the regular 600-cell as the equatorial slice that belongs to the vertex-first passage of the 600-cell through 3D space. In other words: the 30 vertices of the 600-cell which lie at arc distances of 90 degrees on its circumscribed hypersphere from a pair of opposite vertices, are the vertices of an icosidodecahedron. The wire frame figure of the 600-cell consists of 72 flat regular decagons. Six of these are the equatorial decagons to a pair of opposite vertices. They are precisely the six decagons which form the wire frame figure of the icosidodecahedron.

If a 600-cell is stereographically projected to 3-space about any vertex and all points are normalised, the geodesics upon which edges fall comprise the icosidodecahedron's barycentric subdivision.

Icosidodecahedral graph

Icosidodecahedral graph
Icosidodecahedral graph.png
5-fold symmetry Schlegel diagram
Vertices 30
Edges 60
Automorphisms 120
Properties Quartic graph, Hamiltonian, regular
Table of graphs and parameters

In the mathematical field of graph theory, a icosidodecahedral graph is the graph of vertices and edges of the icosidodecahedron, one of the Archimedean solids. It has 30 vertices and 60 edges, and is a quartic graph Archimedean graph. [4]

Icosidodecahedra in nature

The Hoberman sphere is an icosidodecahedron.

Icosidodecahedra can be found in all eukaryotic cells, including human cells, as Sec13/31 COPII coat-protein formations. [5]

Trivia

In Star Trek universe, the Vulcan game of logic Kal-Toh has the goal of creating a shape with two nested holographic icosidodecahedra joined at the midpoints of their segments.

See also

Notes

  1. Weisstein, Eric W. "Icosahedral group". MathWorld .
  2. Coxeter Regular Polytopes , Third edition, (1973), Dover edition, ISBN   0-486-61480-8 (Chapter V: The Kaleidoscope, Section: 5.7 Wythoff's construction)
  3. Two Dimensional symmetry Mutations by Daniel Huson
  4. Read, R. C.; Wilson, R. J. (1998), An Atlas of Graphs, Oxford University Press, p. 269
  5. Russell, Christopher; Stagg, Scott (11 February 2010). "New Insights into the Structural Mechanisms of the COPII Coat". Traffic. 11 (3): 303–310. doi: 10.1111/j.1600-0854.2009.01026.x . PMID   20070605.

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Regular icosahedron</span> Polyhedron with 20 regular triangular faces

In geometry, a regular icosahedron is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces.

<span class="mw-page-title-main">Kepler–Poinsot polyhedron</span> Any of 4 regular star polyhedra

In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent regular polygons, and the same number of faces meet at each vertex. There are only five such polyhedra:

<span class="mw-page-title-main">Rhombicosidodecahedron</span> Archimedean solid

In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated icosidodecahedron</span> Archimedean solid

In geometry, a truncated icosidodecahedron, rhombitruncated icosidodecahedron, great rhombicosidodecahedron, omnitruncated dodecahedron or omnitruncated icosahedron is an Archimedean solid, one of thirteen convex, isogonal, non-prismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Snub dodecahedron</span> Archimedean solid with 92 faces

In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

<span class="mw-page-title-main">Truncated dodecahedron</span> Archimedean solid with 32 faces

In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.

<span class="mw-page-title-main">Triakis icosahedron</span> Catalan solid with 60 faces

In geometry, the triakis icosahedron is an Archimedean dual solid, or a Catalan solid, with 60 isosceles triangle faces. Its dual is the truncated dodecahedron. It has also been called the kisicosahedron. It was first depicted, in a non-convex form with equilateral triangle faces, by Leonardo da Vinci in Luca Pacioli's Divina proportione, where it was named the icosahedron elevatum. The capsid of the Hepatitis A virus has the shape of a triakis icosahedron.

<span class="mw-page-title-main">Disdyakis triacontahedron</span> Catalan solid with 120 faces

In geometry, a disdyakis triacontahedron, hexakis icosahedron, decakis dodecahedron or kisrhombic triacontahedron is a Catalan solid with 120 faces and the dual to the Archimedean truncated icosidodecahedron. As such it is face-uniform but with irregular face polygons. It slightly resembles an inflated rhombic triacontahedron: if one replaces each face of the rhombic triacontahedron with a single vertex and four triangles in a regular fashion, one ends up with a disdyakis triacontahedron. That is, the disdyakis triacontahedron is the Kleetope of the rhombic triacontahedron. It is also the barycentric subdivision of the regular dodecahedron and icosahedron. It has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place.

<span class="mw-page-title-main">Small stellated dodecahedron</span> A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

<span class="mw-page-title-main">Great icosahedron</span> Kepler-Poinsot polyhedron with 20 faces

In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

<span class="mw-page-title-main">Truncation (geometry)</span> Operation that cuts polytope vertices, creating a new facet in place of each vertex

In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.

<span class="mw-page-title-main">Chamfered dodecahedron</span> Goldberg polyhedron with 42 faces

In geometry, the chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron.

<span class="mw-page-title-main">Regular dodecahedron</span> Polyhedron with 12 regular pentagonal faces

A regular dodecahedron or pentagonal dodecahedron is a dodecahedron that is regular, which is composed of 12 regular pentagonal faces, three meeting at each vertex. It is one of the five Platonic solids. It has 12 faces, 20 vertices, 30 edges, and 160 diagonals. It is represented by the Schläfli symbol {5,3}.

<span class="mw-page-title-main">Simple polytope</span> N-dimensional polytope with vertices adjacent to N facets

In geometry, a d-dimensional simple polytope is a d-dimensional polytope each of whose vertices are adjacent to exactly d edges (also d facets). The vertex figure of a simple d-polytope is a (d – 1)-simplex.

<span class="mw-page-title-main">Pentakis icosidodecahedron</span> Geodesic polyhedron with 80 faces

In geometry, the pentakis icosidodecahedron or subdivided icosahedron is a convex polyhedron with 80 triangular faces, 120 edges, and 42 vertices. It is a dual of the truncated rhombic triacontahedron.

References