International Berthing and Docking Mechanism

Last updated
International Berthing and Docking Mechanism
International Berthing and Docking Mechanism.jpg
Description
RolePart of SNC's Dream Chaser to supply cargo to the International Space Station
Prime QinetiQ Space under ESA contract
Dimensions
Outer width1.42 m (4 ft 8 in)
Passageway0.8 m (2 ft 7 in)
Mass<325 kg (716 lb 8 oz)
Performance
EnduranceAt least 210 days
Capture success rate>98% using IDSS initial conditions
Avionics
RedundancyHot redundant (switch-over in less than 150 m (490 ft)) + passive safe mode
Interfaces28 V DC or
120 V DC and 28 V DC

The International Berthing and Docking Mechanism (IBDM) is the European androgynous low impact docking mechanism that is capable of docking and berthing large and small spacecraft. The development of the IBDM is under ESA contract with QinetiQ Space as prime contractor. [1] [2]

Contents

History

The IBDM development was initiated as a joint development programme with NASA JSC. The first application of the IBDM was intended to be the ISS Crew Return Vehicle (CRV). In the original Agency to Agency agreement, it was decided to develop an Engineering Development Unit (EDU) to demonstrate the feasibility of the system and the associated technologies. NASA JSC were responsible for the system and avionics designs and ESA for the mechanical design. However, since the cancellation of the CRV program, the two Agencies have independently progressed with the docking system development.

The IBDM is designed to be compatible with the International Docking System Standard [3] (IDSS) and is hence compatible with the ISS International Docking Adapters (IDA) on the US side of the ISS.

The European Space Agency started a cooperation with SNC to provide the IBDM for attaching this new vehicle to the ISS in the future. [4] After SNC was selected as a commercial contractor to resupply the International Space Station in January 2016, ESA decided to spend 33 million euros ($36 million) to complete the design of the IBDM and build a flight model for Dream Chaser’s first mission. [5]

Design

The IBDM provides both docking and berthing capability. The docking mechanism comprises a Soft Capture Mechanism (SCS), and a structural mating system called the Hard Capture System (HCS), explained in more detail below. The IBDM avionics runs in hot redundancy.

Soft Capture System

The SCS utilizes active control using 6 servo-actuated legs from RUAG Space (Switzerland) which are coordinated to control the SCS ring in its 6 degrees of freedom. The leg forces are measured to modify the compliance of the SCS ring to facilitate alignment of the active platform during capture. [6] A large range of vehicle mass properties can be handled. Mechanical latches achieve soft capture.

Hard Capture System

The HCS uses structural hook mechanisms to close the sealed mated interface. QinetiQ Space has developed several generations of latches and hooks to come to the final hook design. [7] SENER (Spain) will be responsible for the further development and qualification of the HCS subsystem.

Features

The key feature of IBDM is that it is a fully computer controlled mechanism, and it is able to take part in smooth low impact docking and berthing (which reduces contact forces and resultant structural loads), autonomous operations in case of failures, flexibility in vehicle mass making it suitable for applications ranging from explorations to resupply missions. A backup safe mode is also available in case of failure.

Application

Dream Chaser Dream Chaser pre-drop tests.6.jpg
Dream Chaser

The American company Sierra Nevada Corporation (SNC) is developing the Dream Chaser, which is a small reusable spacecraft that is selected to transport cargo and/or crew to the ISS. The European Space Agency has started a cooperation with SNC to potentially provide the IBDM for attaching this new vehicle to the ISS in the future. [4] The IBDM will be mounted to the unpressurised cargo module, which will be ejected before reentry.

Status

The IBDM development has successfully passed the Critical Design Review (December 2015). An engineering model of the mechanism and its heat-redundant avionics has been developed and successfully tested (March 2016). The performance of the system has been verified at the certified SDTS docking test facility at NASA JSC. [8] The consortium has currently started the manufacturing of the full IBDM qualification model (SCS + HCS).

Related Research Articles

<span class="mw-page-title-main">Automated Transfer Vehicle</span> Uncrewed cargo spacecraft developed by the European Space Agency

The Automated Transfer Vehicle, originally Ariane Transfer Vehicle or ATV, was an expendable cargo spacecraft developed by the European Space Agency (ESA), used for space cargo transport in 2008–2015. The ATV design was launched to orbit five times, exclusively by the Ariane 5 heavy-lift launch vehicle. It effectively was a larger European counterpart to the Russian Progress cargo spacecraft for carrying upmass to a single destination—the International Space Station (ISS)—but with three times the capacity.

<i>Cupola</i> (ISS module)

The Cupola is an ESA-built observatory module of the International Space Station (ISS). Its name derives from the Italian word cupola, which means "dome". Its seven windows are used to conduct experiments, dockings and observations of Earth. It was launched aboard Space Shuttle Endeavour's mission STS-130 on 8 February 2010, and attached to the Tranquility module. With the Cupola attached, ISS assembly reached 85 percent completion. The Cupola's central window has a diameter of 80 cm (31 in).

<i>Harmony</i> (ISS module) American module of the International Space Station

Harmony, also known as Node 2, is the "utility hub" of the International Space Station. It connects the laboratory modules of the United States, Europe and Japan, as well as providing electrical power and electronic data. Sleeping cabins for four of the crew are housed here.

<span class="mw-page-title-main">NASA X-38</span> Experimental space lifeboat vehicle

The X-38 was an experimental re-entry vehicle designed by NASA to research a possible emergency crew return vehicle (CRV) for the International Space Station (ISS). The 1995–2002 program also developed concepts for a crew return vehicle design that could be modified for other uses, such as a possible joint U.S. and international human spacecraft that could be launched on the French Ariane 5 booster.

<span class="mw-page-title-main">Space rendezvous</span> Series of orbital maneuvers to bring two spacecraft into the vicinity of each other

A space rendezvous is a set of orbital maneuvers during which two spacecraft, one of which is often a space station, arrive at the same orbit and approach to a very close distance. Rendezvous requires a precise match of the orbital velocities and position vectors of the two spacecraft, allowing them to remain at a constant distance through orbital station-keeping. Rendezvous may or may not be followed by docking or berthing, procedures which bring the spacecraft into physical contact and create a link between them.

<span class="mw-page-title-main">Dream Chaser</span> US reusable automated cargo lifting-body spaceplane

Dream Chaser is an American reusable lifting-body spaceplane being developed by Sierra Space. Originally intended as a crewed vehicle, the Dream Chaser Space System is set to be produced after the cargo variant, Dream Chaser Cargo System, is operational. The crewed variant is planned to carry up to seven people and cargo to and from low Earth orbit.

<span class="mw-page-title-main">Crew Return Vehicle</span> Proposed dedicated lifeboat or escape module for the International Space Station

The Crew Return Vehicle (CRV), sometimes referred to as the Assured Crew Return Vehicle (ACRV), was a proposed dedicated lifeboat or escape module for the International Space Station (ISS). A number of different vehicles and designs were considered over two decades – with several flying as developmental test prototypes – but none became operational. Since the arrival of the first permanent crew to the ISS in 2000, the emergency return capability has been fulfilled by Soyuz spacecraft and, more recently, SpaceX's Crew Dragon – each rotated every 6 months.

<span class="mw-page-title-main">Common Berthing Mechanism</span> Berthing mechanism used to connect ISS modules

The Common Berthing Mechanism (CBM) connects habitable elements in the US Orbital Segment (USOS) of the International Space Station (ISS). The CBM has two distinct sides that, once mated, form a cylindrical vestibule between modules. The vestibule is about 16 inches (0.4 m) long and 6 feet (1.8 m) across. At least one end of the vestibule is often limited in diameter by a smaller bulkhead penetration.

<span class="mw-page-title-main">NASA Docking System</span> Spacecraft docking mechanism

The NASA Docking System is NASA's implementation of the International Docking System Standard (IDSS), an international spacecraft docking standard promulgated by the International Space Station Multilateral Coordination Board. NDS is a spacecraft docking and berthing mechanism used on the International Space Station (ISS) and the Boeing Starliner and planned to be used on the Orion spacecraft. The international Low Impact Docking System (iLIDS) was the precursor to the NDS. NDS Block 1 was designed and built by The Boeing Company in Houston, TX. Design qualification testing took place through January 2017.

<span class="mw-page-title-main">Pressurized Mating Adapter</span> Spacecraft docking adapter

The Pressurized Mating Adapter (PMA) is a class of spacecraft adapters that convert the Common Berthing Mechanism (CBM) used on the US Orbital Segment to APAS-95 docking ports. There are three PMAs located on the International Space Station (ISS); the first two were launched with the Unity connecting module in 1998 aboard STS-88, and the third was launched in 2000 aboard STS-92. All three of the PMAs are now used to permanently connect parts of the ISS, so they are no longer available as docking ports for visiting spacecraft.

ARCTUS was a proposed design by Astrotech Corporation and developed with its partners Lockheed Martin, United Launch Alliance, Cimarron and Odyssey Space Research for a robotic spacecraft that would deliver cargo to the International Space Station, NASA COTS program. ARCTUS was planned to be launched by an Atlas V rocket. Its pressurized cargo module would return to Earth and be recovered with a mid-air retrieval operation.

<span class="mw-page-title-main">International Space Station programme</span> Ongoing space research program

The International Space Station programme is tied together by a complex set of legal, political and financial agreements between the fifteen nations involved in the project, governing ownership of the various components, rights to crewing and utilisation, and responsibilities for crew rotation and resupply of the International Space Station. It was conceived in September 1993 by the United States and Russia after 1980s plans for separate American (Freedom) and Soviet (Mir-2) space stations failed due to budgetary reasons. These agreements tie together the five space agencies and their respective International Space Station programmes and govern how they interact with each other on a daily basis to maintain station operations, from traffic control of spacecraft to and from the station, to utilisation of space and crew time. In March 2010, the International Space Station Program Managers from each of the five partner agencies were presented with Aviation Week's Laureate Award in the Space category, and the ISS programme was awarded the 2009 Collier Trophy.

<span class="mw-page-title-main">Kounotori 2</span> 2011 Japanese resupply spaceflight to the ISS

Kounotori 2, also known as HTV-2, was launched in January 2011 and was the second flight of the Japanese H-II Transfer Vehicle to resupply the International Space Station (ISS). It was launched by the H-IIB Launch Vehicle No. 2 manufactured by Mitsubishi Heavy Industries (MHI) and JAXA. After the supplies were unloaded, Kounotori 2 was loaded with waste material from ISS, including used experiment equipment and used clothes. Kounotori 2 was then unberthed and separated from the ISS and burned up upon reentering the atmosphere on 30 March 2011.

<span class="mw-page-title-main">US Orbital Segment</span> US components of the International Space Station

The US Orbital Segment (USOS) is the name given to the components of the International Space Station (ISS) constructed and operated by the United States National Aeronautics and Space Administration (NASA), European Space Agency (ESA), Canadian Space Agency (CSA) and Japan Aerospace Exploration Agency (JAXA). The segment consists of eleven pressurized components and various external elements, all of which were delivered by the Space Shuttle.

<span class="mw-page-title-main">Docking and berthing of spacecraft</span> Joining of two or more space vehicles

Docking and berthing of spacecraft is the joining of two space vehicles. This connection can be temporary, or partially permanent such as for space station modules.

<i>Columbus</i> Man-Tended Free Flyer Defunct crewed space station program

The Columbus Man-Tended Free Flyer (MTFF) was a European Space Agency (ESA) program to develop a space station that could be used for a variety of microgravity experiments while serving ESA's needs for an autonomous crewed space platform. It consisted of a Columbus module docked to a service module containing solar power collectors, communications and other services. The program ran from 1986 to 1991, was expected to cost $3.56 billion including launch and utilization, and was cancelled while still in the planning stage. Aspects of the program were later realised in the Columbus science laboratory attached to the International Space Station (ISS).

<span class="mw-page-title-main">Comparison of space station cargo vehicles</span>

A number of different spacecraft have been used to carry cargo to and from space stations.

<span class="mw-page-title-main">International Docking System Standard</span> International standard for spacecraft docking adapters

The International Docking System Standard (IDSS) is an international standard for spacecraft docking adapters. It was created by the International Space Station Multilateral Coordination Board, on behalf of the International Space Station partner organizations; NASA, Roscosmos, JAXA, ESA, and the Canadian Space Agency.

Sistema Stykovki i Vnutrennego Perekhoda, SSVP is a docking standard used by Soviet and Russian spacecraft, sometimes called RDS for Russian Docking System. It has been used on all variants of Soyuz other than the Soyuz 7K-L3 and early flights of the Soyuz 7K-OK, as well as Progress, TKS, ATV, and on all Soviet and Russian space stations.

TGK PG is an automated cargo spacecraft project to replace Progress-MS as the Russian logistic vehicle to the ISS. It was requested for development to take advantage of the increased lift capacity of the Soyuz-2.1b. The initial development contract was awarded to RSC Energia by Roscosmos on December 11, 2015. The spacecraft is not expected to fly before 2020.

References

  1. Caporicci, Marco (2010). "IBDM: THE INTERNATIONAL BERTHING DOCKING MECHANISM FOR HUMAN MISSIONS TO LOW EARTH ORBIT AND EXPLORATION". IAC. Archived from the original on 4 March 2016. Retrieved 4 January 2016.
  2. "QinetiQ Space wins contract with European Space Agency to develop International Berthing Docking Mechanism". QinetiQ . 3 June 2014. Retrieved 4 January 2016.
  3. International Docking System Standard (Rev. C ed.). November 20, 2013.
  4. 1 2 "QinetiQ Space Wins ESA Contract for International Berthing Docking Mechanism". Archived from the original on 2020-09-06. Retrieved 2015-01-15.
  5. "Europe to invest in Sierra Nevada's Dream Chaser cargo vehicle". Space News. 22 January 2016. Retrieved January 1, 2017.
  6. Claessens, Dirk (2012). "DEVELOPMENT OF THE INTERNATIONAL BERTHING AND DOCKING MECHANISM COMPATIBLE WITH THE INTERNATIONAL DOCKING SYSTEM STANDARD". IAC. Retrieved 4 January 2016.
  7. K. De Vriendt; H. Dittmer; D. Vrancken; P. Urmston; O. Gracia; M. Caporicci. "Evolution of the IBDM Structural Latch Development into a Generic Simplified DesignEvolution of the IBDM Structural Latch Development into a Generic Simplified Design" . Retrieved 4 January 2016.{{cite journal}}: Cite journal requires |journal= (help)
  8. Dittmer, Helder; Paijmans, Bart (16 Oct 2016). "The International Berthing Docking Mechanism (IBDM):Demonstrating full compliance to the International Docking System Standard (IDSS)". 66th International Astronautical Congress. Archived from the original on 2015-03-18.