Universal Space Interface Standard

Last updated
The Logo of the USIS Association. USISLogo.jpeg
The Logo of the USIS Association.

Universal Space Interface Standard (USIS) is a physical interface between medium to large manned or unmanned spacecraft such as satellites, space stations and service tugs. [1] It is designed to be suitable for adoption as an industry standard. Development is currently being undertaken by Mark Hempsell at Hempsell Astronautics Ltd. [2] The rationale for the creation of an industry standard for spacecraft interfaces is that the number of applications for space vehicles is likely to increase greatly in the future (space tourism being a recent example). If each craft is utilising a common interface many new applications become feasible. This is somewhat analogous to the benefits which have been gained by widespread adoption of the USB connector in computing or even the standardisation of AC power plugs and sockets across some parts of the world.

Design

The fundamental purpose of USIS has been stated to "be a standard connection that maximises the interconnectivity between independent systems in both the open space (orbital) and celestial body surface environments". [3] To achieve this USIS must be suitable for a range of connection types, from ground made connections to hard docking between orbiting spacecraft. It must also be highly interconnectable (for example being fully androgynous, any two USISs being compatible), capable of bearing expected loads, capable of soft capture, and be able to sever the connection in a controlled manner. USIS also needs to be able to facilitate data, power and resource transfer when connected, and allow easy passage of personnel who are not necessarily trained astronauts in anticipation of the Space Tourism industry. [3] Three potential designs have been proposed for the USIS concept, one from Reaction Engines, one from Qinetiq and one most recently from Hempsell Astronautics. [1]

Related Research Articles

<span class="mw-page-title-main">Interplanetary spaceflight</span> Crewed or uncrewed travel between stars or planets

Interplanetary spaceflight or interplanetary travel is the crewed or uncrewed travel between stars and planets, usually within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System. Uncrewed space probes have flown to all the observed planets in the Solar System as well as to dwarf planets Pluto and Ceres, and several asteroids. Orbiters and landers return more information than fly-by missions. Crewed flights have landed on the Moon and have been planned, from time to time, for Mars and Venus. While many scientists appreciate the knowledge value that uncrewed flights provide, the value of crewed missions is more controversial. Science fiction writers propose a number of benefits, including the mining of asteroids, access to solar power, and room for colonization in the event of an Earth catastrophe.

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

<span class="mw-page-title-main">Spaceflight</span> Flight into or through outer space

Spaceflight is an application of astronautics to fly spacecraft into or through outer space, either with or without humans on board. Most spaceflight is uncrewed and conducted mainly with spacecraft such as satellites in orbit around Earth, but also includes space probes for flights beyond Earth orbit. Such spaceflight operates either by telerobotic or autonomous control. The more complex human spaceflight has been pursued soon after the first orbital satellites and has reached the Moon and permanent human presence in space around Earth, particularly with the use of space stations. Human spaceflight programs include the Soyuz, Shenzhou, the past Apollo Moon landing and the Space Shuttle programs, with currently the International Space Station as the main destination of human spaceflight missions while China's Tiangong Space Station is under construction.

Astronautics Theory and practice of navigation beyond the Earths atmosphere

Astronautics is the theory and practice of travel beyond Earth's atmosphere into outer space. Spaceflight is one of its main applications and space science its overarching field.

<span class="mw-page-title-main">Telerobotics</span>

Telerobotics is the area of robotics concerned with the control of semi-autonomous robots from a distance, chiefly using television, wireless networks or tethered connections. It is a combination of two major subfields, which are teleoperation and telepresence.

<span class="mw-page-title-main">Skylon (spacecraft)</span> Single-stage-to-orbit spaceplane

Skylon is a series of concept designs for a reusable single-stage-to-orbit spaceplane by the British company Reaction Engines Limited (Reaction), using SABRE, a combined-cycle, air-breathing rocket propulsion system. The vehicle design is for a hydrogen-fuelled aircraft that would take off from a specially built reinforced runway, and accelerate to Mach 5.4 at 26 kilometres (85,000 ft) altitude using the atmosphere's oxygen before switching the engines to use the internal liquid oxygen (LOX) supply to take it into orbit. It could carry 17 tonnes (37,000 lb) of cargo to an equatorial low Earth orbit (LEO); up to 11 tonnes (24,000 lb) to the International Space Station, almost 45% more than the capacity of the European Space Agency's Automated Transfer Vehicle; or 7.3 tonnes (16,000 lb) to Geosynchronous Transfer Orbit (GTO), over 24% more than SpaceX Falcon 9 launch vehicle in reusable mode. The relatively light vehicle would then re-enter the atmosphere and land on a runway, being protected from the conditions of re-entry by a ceramic composite skin. When on the ground, it would undergo inspection and necessary maintenance, with a turnaround time of approximately two days, and be able to complete at least 200 orbital flights per vehicle.

<span class="mw-page-title-main">CubeSat</span> Miniature satellite in 10cm cube modules

A CubeSat is a class of miniaturized satellite based around a form factor consisting of 10 cm (3.9 in) cubes. CubeSats have a mass of no more than 2 kg (4.4 lb) per unit, and often use commercial off-the-shelf (COTS) components for their electronics and structure. CubeSats are put into orbit by deployers on the International Space Station, or launched as secondary payloads on a launch vehicle. As of August 2021, more than 1,600 CubeSats have been launched.

Orbital spaceflight Spaceflight where spacecraft orbits an astronomical body

An orbital spaceflight is a spaceflight in which a spacecraft is placed on a trajectory where it could remain in space for at least one orbit. To do this around the Earth, it must be on a free trajectory which has an altitude at perigee around 80 kilometers (50 mi); this is the boundary of space as defined by NASA, the US Air Force and the FAA. To remain in orbit at this altitude requires an orbital speed of ~7.8 km/s. Orbital speed is slower for higher orbits, but attaining them requires greater delta-v. The Fédération Aéronautique Internationale has established the Kármán line at an altitude of 100 km (62 mi) as a working definition for the boundary between aeronautics and astronautics. This is used because at an altitude of about 100 km (62 mi), as Theodore von Kármán calculated, a vehicle would have to travel faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself.

In spaceflight, an orbital maneuver is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth an orbital maneuver is called a deep-space maneuver (DSM).

Launch vehicle Rocket used to carry an object into space

A launch vehicle or carrier rocket can carry a payload from the surface to outer space, such as spacecraft and satellites. They are often operated with extensive infrastructure such as launch pads, vehicle assembly, fueling systems, range safety, etc. The difficulties of spaceflight demand launch vehicles to be engineered with very advanced aerodynamics and technologies – a big contributor to the vehicle's expensive operating cost.

Space launch Earliest phase of a flight that reaches space

Space launch is the earliest part of a flight that reaches space. Space launch involves liftoff, when a rocket or other space launch vehicle leaves the ground, floating ship or midair aircraft at the start of a flight. Liftoff is of two main types: rocket launch, and non-rocket spacelaunch.

<span class="mw-page-title-main">Orel (spacecraft)</span> Planned reusable crewed spacecraft

Orel or Oryol, formerly Federation, and PPPTS, is a project by Roscosmos to develop a new-generation, partially reusable crewed spacecraft.

ITUpSAT1, short for Istanbul Technical University picoSatellite-1) is a single CubeSat built by the Faculty of Aeronautics and Astronautics at the Istanbul Technical University. It was launched on 23 September 2009 atop a PSLV-C14 satellite launch vehicle from Satish Dhawan Space Centre, Sriharikota, Andhra Pradesh in India, and became the first Turkish university satellite to orbit the Earth. It was expected to have a minimum of six-month life term, but it is still functioning for over two years. It is a picosatellite with side lengths of 10 centimetres (3.9 in) and a mass of 0.990 kilograms (2.18 lb).

<span class="mw-page-title-main">Docking and berthing of spacecraft</span> Joining of two or more space vehicles

Docking and berthing of spacecraft is the joining of two space vehicles. This connection can be temporary, or partially permanent such as for space station modules.

<span class="mw-page-title-main">Altius Space Machines</span> American aerospace company

Altius Space Machines is a subsidiary company of Voyager Space Holdings, based in Broomfield, CO dedicated to engineering the future in Aerospace.

Secondary payload Launch of small spacecraft together with larger one

Secondary payload, also known as rideshare payload, is a smaller-sized payload transported to orbit on a launch vehicle that is mostly paid for—and with the date and time of launch and the orbital trajectory determined—by the entity that contracts and pays for the primary launch. As a result, the secondary payload typically obtains a substantially reduced price for transportation services to orbit, by accepting a trade off of the loss of control once the contract is signed and the payload is delivered to the launch vehicle supplier for integration to the launch vehicle. These tradeoffs typically include having little or no control over the launch date/time, the final orbital parameters, or the ability to halt the launch and remove the payload should a payload failure occur during ground processing prior to launch, as the primary payload typically purchases all of these launch property rights via contract with the launch services provider.

Mark Hempsell is a British aerospace engineer and CEO of Hempsell Astronautics Ltd. which is currently designing the Universal Space Interface Standard (USIS), a system which aims to standardise berthing, docking and attachment of satellites and other spacecraft. Mark formerly worked at Reaction Engines Limited, where he was a member of the board of directors as the Future Programmes Director.

Deep Space Industries, or DSI, was an American privately-held company operating in the space technology and space exploration sectors. It was acquired on January 1, 2019 by Bradford Space.

Ground segment Ground-based elements of a spacecraft system

A ground segment consists of all the ground-based elements of a spacecraft system used by operators and support personnel, as opposed to the space segment and user segment. The ground segment enables management of a spacecraft, and distribution of payload data and telemetry among interested parties on the ground. The primary elements of a ground segment are:

References

  1. 1 2 "USIS Association Information" . Retrieved 28 September 2014.
  2. "Hempsell Astronautics Company Information" . Retrieved 28 September 2014.
  3. 1 2 USIS Association (28 April 2014). Requirement Specification for a universal space interface standard DRAFT (PDF) (Report). Retrieved 28 September 2014.