JT (visualization format)

Last updated
Jupiter Tessellation
Filename extension
.JT
Latest release
10.5
2019
Type of formatA scene graph CAD format
Open format?Yes
Website Siemens JT

JT (Jupiter Tessellation) is an openly-published ISO-standardized 3D CAD data exchange format used for product visualization, collaboration, digital mockups, and other purposes. [1] It was developed by Siemens. [1]

Contents

It can contain any combination of approximate (faceted) data, boundary representation surfaces (NURBS), Product and Manufacturing Information (PMI), and Metadata (textual attributes) either exported from the native CAD system or inserted by a product data management (PDM) system.

The JT format contains a scene graph representation of an assembly, nested sub-assemblies of parts with CAD specific node and attributes data. [2] :17 Facet information (triangles) is stored by using geometry compression techniques. Visual attributes of 3D scene and model like lights, textures, and/or materials are supported. Product and Manufacturing Information (PMI), Precise Part definitions (BRep), additional metadata, and a variety of representation configurations are supported. The JT format is designed to be streamable. [2] :17

Overview

JT files are used in product lifecycle management (PLM) software programs and their respective CAD systems, by engineers and other professionals that need to analyze the geometry of complex products. The format and associated software is structured so that extremely large numbers of components can be quickly loaded, shaded and manipulated in real-time. Because all major 3D CAD formats are supported, a JT assembly can contain a mixture of any combination which has led to the term "multi-CAD". As JT is typically implemented as an integral part of a PLM solution, the resulting multi-CAD assembly is managed such that changes to the original CAD product definition files can be automatically synchronized with their associated JT files resulting in a multi-CAD assembly that is always up-to-date.

Because JT files are inherently "lightweight" (~1-10% of the size of a CAD file) they are ideal for internet collaboration. With the growing trend toward globalization, more companies are leveraging resources wherever they are available in the world. Collaboration using JT allows companies to send 3D visualization data to suppliers and partners much more easily than sending the associated "heavy" CAD files. In addition, real-time, on-line collaboration is easier because the amount of information sent back-and-forth across the internet is reduced. Finally, JT provides an inherent security feature such that intellectual property does not have to be shared with inappropriate parties. As indicated above, JT can contain any combination of data such that the right amount of information can be shared without exposing the underlying proprietary design definition information.

JT is often used for Digital mock-up (DMU) work, which allows engineers to validate that a product can be assembled without interferences long before a physical prototype could be produced. This "spatial validation" is enabled by precise measurements and cross-sectioning as well as sophisticated clearance/interference detection. Leveraging JT for digital mock-up allows users to reduce or eliminate costly physical prototypes and enables decision-making to occur much earlier in the development process.

Finally, JT is used as a CAD interoperability format for exchanging design data for Collaborative Product Development, where JT files are created by translating data from CAD systems such as NX (Unigraphics), Creo Elements/Pro, FORAN, I-DEAS, Solid Edge, Catia, Microstation or Autodesk Inventor.

Large model rendering

JT was created to support the interactive display of very large assemblies (i.e. those containing tens of thousands of components). The JT file format is capable of storing an arbitrary number of faceted representations with varying levels of detail (LODs). When the whole product is displayed on the computer screen the hosting application displays only a simple, coarse, model. However, as the user zooms into a particular area, progressively finer representations are loaded and displayed. Over time, unused representations are unloaded to save memory.

History

JT was originally developed by Engineering Animation, Inc. and Hewlett-Packard as the DirectModel toolkit (initially Jupiter). JT is the abbreviation for Jupiter Tesselation. When EAI was purchased by UGS Corp., JT became a part of UGS's suite of products. Early in 2007 UGS announced the publication of the JT data format easing the adoption of JT as a master 3D format. Also in 2007, UGS was acquired by Siemens AG and became Siemens Digital Industries Software. JT is the common interoperability format in use across all of Siemens Digital Industries Software and has been adopted as the long term data archival format across all of Siemens.

On September 18, 2009, the ISO stated officially that the JT specification has been accepted for publication as an ISO Publicly Available Specification (PAS). End of August 2010 the Ballot for the New Work Item (NWI) proposal for JT as ISO International Standard was started by ProSTEP iViP. ProSTEP iViP thereby aimed on the one hand to publish the JT file format specification as ISO Standard and, on the other hand, to harmonize this undertaking with the new STEP AP 242 development, so that JT and STEP (especially STEP AP 242 XML) can be used together to assure major benefits within industrial data exchange scenarios.

In 2012 December, JT has been officially published as ISO 14306:2012 (ISO JT V1) [3] as a 3D visualization format, based on version 9.5 of JT specifications released by Siemens Digital Industries Software. Through this publication via ISO, for the first time a completely neutral and royalty-free specification of JT was available. [4]

Beginning of 2013, in ISO the specification of ISO JT V2 was started. The ISO/DIS 14306 V2 [5] was accepted by ISO in November 2016. The final International Standard was published in November 2017. [2] Main difference between V1 and V2 is the incorporation of a STEP B-rep as an additional B-rep segment.

For providing additional functionalities and innovations required by industry, ProSTEP iViP and VDA decided mid of 2015 to specify a so-called JT Industrial Application Package (JTIAP), [6] which is a JT file format specification completely compatible to ISO 14306 (V1 as well as the future V2) and currently existing JT-Open-based implementations. Thereby, JTIAP provide a more comprehensive compression algorithm (LZMA), specifies XT B-rep as recommended representation of exact geometry and allows the neutral and royalty-free implementation of JT.

Data model

The JT data model is capable of representing a wide range of engineering data. This data can be very lightweight, holding little more than facet data or it can be quite rich, containing complete NURBS geometry representations along with product structure, attributes, meta data and PMI. It also supports multiple tessellations and level-of-detail (LOD) generation. [2] :17

File structure

The relationship of product structure hierarchy to exported JT file structure is arbitrary. Any node in the hierarchy may be specified as the start of a new JT file. Thus, product structure may be represented in a variety of JT file configurations.

JT supports common product structure-to-file structure mappings. These include:

Client applications may use these mappings, or choose to define their own custom mapping.

Compression

To help shrink the storage and transmission bandwidth requirements of 3D models, JT files may take advantage of compression. Use of compression is transparent to the user of the JT data, and a given model may be composed of JT files using different compression settings (including none).

To date, the JT file format has evolved through two forms of compression, exposed in JT Open Toolkit as standard and advanced compression. These differ in that the former employs a simple, lossless compression algorithm, while the latter employs a more sophisticated, domain-specific compression scheme supporting lossy geometry compression. Client applications are encouraged to take advantage of advanced compression over standard compression, as attainable compression ratios are much greater. Support for standard compression is maintained only in the interest of backward compatibility with legacy JT file viewing applications.

The compression form used by a JT file is related to the JT file format version in which it was written. This version is readily viewable by opening a JT file in a text editor and looking at its ASCII header information.

See also

Related Research Articles

<span class="mw-page-title-main">Computer-aided design</span> Constructing a product by means of computer

Computer-Aided Design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software help protect products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer-aided design and drafting (CADD) are also used.

<span class="mw-page-title-main">Geometric dimensioning and tolerancing</span> System for defining and representing engineering tolerances

Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances via a symbolic language on engineering drawings and computer-generated 3D models that describes a physical object's nominal geometry and the permissible variation thereof. GD&T is used to define the nominal geometry of parts and assemblies, the allowable variation in size, form, orientation, and location of individual features, and how features may vary in relation to one another such that a component is considered satisfactory for its intended use. Dimensional specifications define the nominal, as-modeled or as-intended geometry, while tolerance specifications define the allowable physical variation of individual features of a part or assembly.

ISO 10303 is an ISO standard for the computer-interpretable representation and exchange of product manufacturing information. It is an ASCII-based format. Its official title is: Automation systems and integration — Product data representation and exchange. It is known informally as "STEP", which stands for "Standard for the Exchange of Product model data". ISO 10303 can represent 3D objects in Computer-aided design (CAD) and related information.

STEP-file is a widely used data exchange form of STEP. ISO 10303 can represent 3D objects in computer-aided design (CAD) and related information. Due to its ASCII structure, a STEP-file is easy to read, with typically one instance per line. The format of a STEP-file is defined in ISO 10303-21 Clear Text Encoding of the Exchange Structure.

COLLADA is an interchange file format for interactive 3D applications. It is managed by the nonprofit technology consortium, the Khronos Group, and has been adopted by ISO as a publicly available specification, ISO/PAS 17506.

Product and manufacturing information, also abbreviated PMI, conveys non-geometric attributes in 3D computer-aided design (CAD) and Collaborative Product Development systems necessary for manufacturing product components and assemblies. PMI may include geometric dimensions and tolerances, 3D annotation (text) and dimensions, surface finish, and material specifications. PMI is used in conjunction with the 3D model within model-based definition to allow for the elimination of 2D drawings for data set utilization.

CAD data exchange is a method of drawing data exchange used to translate between different computer-aided design (CAD) authoring systems or between CAD and other downstream CAx systems.

<span class="mw-page-title-main">Open Cascade Technology</span> Open-source 3D modelling software

Open Cascade Technology (OCCT), formerly called CAS.CADE, is an open-source software development platform for 3D CAD, CAM, CAE, etc. that is developed and supported by Open Cascade SAS company.

<span class="mw-page-title-main">Rhinoceros 3D</span> 3D computer graphics software

Rhinoceros is a commercial 3D computer graphics and computer-aided design (CAD) application software that was developed by TLM, Inc, dba Robert McNeel & Associates, an American, privately held, and employee-owned company that was founded in 1978. Rhinoceros geometry is based on the NURBS mathematical model, which focuses on producing mathematically precise representation of curves and freeform surfaces in computer graphics.

Open Design Alliance is a nonprofit organization creating software development kits (SDKs) for engineering applications. ODA offers interoperability tools for CAD, BIM, and Mechanical industries including .dwg, .dxf, .dgn, Autodesk Revit, Autodesk Navisworks, and .ifc files and additional tools for visualization, web development, 3D PDF publishing and modeling.

<span class="mw-page-title-main">Solid Edge</span> Computer-aided design software

Solid Edge is a 3D CAD, parametric feature and synchronous technology solid modeling software. It runs on Microsoft Windows and provides solid modeling, assembly modelling and 2D orthographic view functionality for mechanical designers. Through third party applications it has links to many other Product Lifecycle Management (PLM) technologies.

PRC is a file format that can be used to embed 3D data in a PDF file.

<span class="mw-page-title-main">Siemens NX</span> Computer-aided design software

NX, formerly known as "unigraphics", is an advanced high-end CAD/CAM/CAE, which has been owned since 2007 by Siemens Digital Industries Software. In 2000, Unigraphics purchased SDRC I-DEAS and began an effort to integrate aspects of both software packages into a single product which became Unigraphics NX or NX.

PartXplore is a computer aided design (CAD) file viewer developed by Sescoi for reading, analyzing, and sharing 3D and 2D CAD files without requiring the original CAD application. It was introduced in 2008 and is supported from local Vero offices. The software is available as a viewer and an evaluation version.

<span class="mw-page-title-main">UGS Corp.</span> American computer software company

UGS was a computer software company headquartered in Plano, Texas, specializing in 3D & 2D Product Lifecycle Management (PLM) software. Its operations were amalgamated into the Siemens Digital Industries Software business unit of Siemens Industry Automation division, when Siemens completed the US$3.5 billion acquisition of UGS on May 7, 2007.

Siemens Digital Industries Software is an American computer software company specializing in 3D & 2D Product Lifecycle Management (PLM) software. The company is a business unit of Siemens, operates under the legal name of Siemens Industry Software Inc, and is headquartered in Plano, Texas.

<span class="mw-page-title-main">C3D Toolkit</span> Geometric modelling kernel

C3D Toolkit is a proprietary cross-platform geometric modeling kit software developed by Russian by C3D Labs. It's written in C++. It can be licensed by other companies for use in their 3D computer graphics software products. The most widely known software in which C3D Toolkit is typically used are computer aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems.

3D Manufacturing Format or 3MF is an open source file format standard developed and published by the 3MF Consortium.

<span class="mw-page-title-main">Onshape</span> Computer-aided design software system

Onshape is a computer-aided design (CAD) software system, delivered over the Internet via a software as a service (SAAS) model. It makes extensive use of cloud computing, with compute-intensive processing and rendering performed on Internet-based servers, and users are able to interact with the system via a web browser or the iOS and Android apps. As a SAAS system, Onshape upgrades are released directly to the web interface, and the software does not require maintenance work from the user.

References

  1. 1 2 "JT | Siemens Software". Siemens Digital Industries Software. Retrieved 2022-04-15.
  2. 1 2 3 4 ISO 14306:2017 Industrial automation systems and integration — JT file format specification for 3D visualization, as 10 January 2022.
  3. ISO 14306:2012 - JT file format specification for 3D visualization., as 15. December 2012.
  4. JT Patent Statement and Licensing Declaration, as of 23 September 2011.
  5. ISO/DIS 14306 V2 - JT file format specification for 3D visualization., as 27 July 2016.
  6. PSI 14-1: JT Industrial Application Package., as 30 June 2016.