Liquid dielectric

Last updated

A liquid dielectric is a dielectric material in liquid state. Its main purpose is to prevent or rapidly quench electric discharges. Dielectric liquids are used as electrical insulators in high voltage applications, e.g. transformers, capacitors, high voltage cables, and switchgear (namely high voltage switchgear). Its function is to provide electrical insulation, suppress corona and arcing, and to serve as a coolant.

Contents

A good liquid dielectric should have high dielectric strength, high thermal stability and inertness against the construction materials used, non-flammability and low toxicity, good heat transfer properties, and low cost.

Liquid dielectrics are self-healing; when an electric breakdown occurs, the discharge channel does not leave a permanent conductive trace in the fluid.

The electrical properties tend to be strongly influenced by dissolved gases (e.g. oxygen or carbon dioxide), dust, fibers, and especially ionic impurities and moisture. Electrical discharge may cause production of impurities degrading the dielectric's performance. [1]

Some examples of dielectric liquids are transformer oil, perfluoroalkanes, and purified water.

Common liquid dielectrics

NameDielectric constantMax. breakdown strength (MV/cm)Properties
Mineral oil 1.0 [1] Flammable. Common type of transformer oil.
n-Hexane 1.1–1.3 [1] Flammable. Used in some capacitors.
n-Heptane Flammable.
Castor oil natural ester4.7High dielectric constant. Flammable. Refined and dried castor oil is used in some high voltage capacitors.
Hatcol 5005 synthetic ester [2] 3.2High dielectric constant. Fire Resistant. Biodegradable PCB replacement. Low temperature fluidity.
Silicone oil 2.3–2.8 (-20)[ clarification needed ] [3] 1.0-1.2 [1] More expensive than hydrocarbons. Less flammable.
Fluorinert FC-72 1.75 [4] >0.16 [4] More expensive than hydrocarbons. Non flammable and non toxic. High global warming potential. Boiling point of 56 °C.
Novec 649 1.8 [5] >0.16 [5] More expensive than hydrocarbons. Non flammable and non toxic. Low global warming potential. Boiling point of 49 °C.
Novec 7100 7.4 [6] >0.01 [6] More expensive than hydrocarbons. Higher Dk compared to other perfluoroalkanes. Non flammable and non toxic. Low global warming potential. Boiling point of 61 °C.
Polychlorinated biphenyls Formerly used in transformers and capacitors. Persistent organic pollutant, toxic, now phased out. Low flammability.
Purified water 78 [7] :503High thermal capacity, good cooling properties. Low electrical conductivity when free of ions.
Benzene 2.28 [7] :5031.1 [1] Toxic, flammable.
Liquid oxygen 2.4Cryogenic. Highly flammable with combustible materials.
Liquid nitrogen 1.43 [7] :4981.6-1.9 [1] Cryogenic. Used as coolant with many low-temperature sensors and high-temperature superconductors.
Liquid hydrogen 1.0 [1] Cryogenic. Flammable.
Liquid helium 0.7 [1] Cryogenic. Used with superconductors.
Liquid argon 1.10–1.42 [1] Cryogenic.

See also

Related Research Articles

Insulator (electricity) Material that does not conduct an electric current

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

Dielectric Electrically insulating substance able to be polarised by an applied electric field

In electromagnetism, a dielectric is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of dielectric polarisation, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarised, but also reorient so that their symmetry axes align to the field.

In physics, the term dielectric strength has the following meanings:

Electrical discharge machining Metal fabrication process whereby a desired shape is obtained by using electrical discharges to remove material

Electrical discharge machining (EDM), also known as spark machining, spark eroding, die sinking, wire burning or wire erosion, is a metal fabrication process whereby a desired shape is obtained by using electrical discharges (sparks). Material is removed from the work piece by a series of rapidly recurring current discharges between two electrodes, separated by a dielectric liquid and subject to an electric voltage. One of the electrodes is called the tool-electrode, or simply the tool or electrode, while the other is called the workpiece-electrode, or work piece. The process depends upon the tool and work piece not making physical contact.

Static electricity

Static electricity is an imbalance of electric charges within or on the surface of a material or between materials. The charge remains until it is able to move away by means of an electric current or electrical discharge. Static electricity is named in contrast with current electricity, where the electric charge flows through an electrical conductor or space, and transmits energy.

In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. While a corona discharge (CD) is usually revealed by a relatively steady glow or brush discharge (BD) in air, partial discharges within solid insulation system are not visible.

Lichtenberg figure Branching shapes

A Lichtenberg figure, or Lichtenberg dust figure, is a branching electric discharge that sometimes appears on the surface or in the interior of insulating materials. Lichtenberg figures are often associated with the progressive deterioration of high voltage components and equipment. The study of planar Lichtenberg figures along insulating surfaces and 3D electrical trees within insulating materials often provides engineers with valuable insights for improving the long-term reliability of high-voltage equipment. Lichtenberg figures are now known to occur on or within solids, liquids, and gases during electrical breakdown.

Electrical breakdown

Electrical breakdown or dielectric breakdown is a process that occurs when an electrical insulating material, subjected to a high enough voltage, suddenly becomes an electrical conductor and electric current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and in addition to its dielectric strength depends on its size and shape. Under sufficient electrical potential, electrical breakdown can occur within solids, liquids, gases or vacuum. However, the specific breakdown mechanisms are different for each kind of dielectric medium.

Breakdown voltage

The breakdown voltage of an insulator is the minimum voltage that causes a portion of an insulator to experience electrical breakdown and become electrically conductive.

Electric arc

An electric arc, or arc discharge, is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma; the plasma may produce visible light. An arc discharge is characterized by a lower voltage than a glow discharge and relies on thermionic emission of electrons from the electrodes supporting the arc. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

Fluorinert is the trademarked brand name for the line of electronics coolant liquids sold commercially by 3M. As perfluorinated compounds (PFCs), all Fluorinert variants have an extremely high Global Warming Potential (GWP), so should be used with caution (see below). It is an electrically insulating, stable fluorocarbon-based fluid, which is used in various cooling applications. It is mainly used for cooling electronics. Different molecular formulations are available with a variety of boiling points, allowing it to be used in "single-phase" applications, where it remains a liquid, or for "two-phase" applications, where the liquid boils to remove additional heat by evaporative cooling. An example of one of the compounds 3M uses is FC-72 (perfluorohexane, C6F14). Perfluorohexane is used for low-temperature heat-transfer applications due to its 56 °C (133 °F) boiling point. Another example is FC-75, perfluoro(2-butyl-tetrahydrofurane). There are 3M fluids that can handle up to 215 °C (419 °F), such as FC-70 (perfluorotripentylamine).

Switchgear Component of an electric power system

In an electric power system, switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to be done and to clear faults downstream. This type of equipment is directly linked to the reliability of the electricity supply.

Transformer oil or insulating oil is an oil that is stable at high temperatures and has excellent electrical insulating properties. It is used in oil-filled transformers, some types of high-voltage capacitors, fluorescent lamp ballasts, and some types of high-voltage switches and circuit breakers. Its functions are to insulate, suppress corona discharge and arcing, and to serve as a coolant.

Bushing (electrical)

In electric power, a bushing is a hollow electrical insulator that allows an electrical conductor to pass safely through a conducting barrier such as the case of a transformer or circuit breaker without making electrical contact with it. Bushings are typically made from porcelain; though other insulating materials are also used.

Electric spark

An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael Faraday described this phenomenon as "the beautiful flash of light attending the discharge of common electricity".

Plasma activation is a method of surface modification employing plasma processing, which improves surface adhesion properties of many materials including metals, glass, ceramics, a broad range of polymers and textiles and even natural materials such as wood and seeds. Plasma functionalization also refers to the introduction of functional groups on the surface of exposed materials. It is widely used in industrial processes to prepare surfaces for bonding, gluing, coating and painting. Plasma processing achieves this effect through a combination of reduction of metal oxides, ultra-fine surface cleaning from organic contaminants, modification of the surface topography and deposition of functional chemical groups. Importantly, the plasma activation can be performed at atmospheric pressure using air or typical industrial gases including hydrogen, nitrogen and oxygen. Thus, the surface functionalization is achieved without expensive vacuum equipment or wet chemistry, which positively affects its costs, safety and environmental impact. Fast processing speeds further facilitate numerous industrial applications.

Dielectric barrier discharge

Dielectric-barrier discharge (DBD) is the electrical discharge between two electrodes separated by an insulating dielectric barrier. Originally called silent (inaudible) discharge and also known as ozone production discharge or partial discharge, it was first reported by Ernst Werner von Siemens in 1857.

A dielectric gas, or insulating gas, is a dielectric material in gaseous state. Its main purpose is to prevent or rapidly quench electric discharges. Dielectric gases are used as electrical insulators in high voltage applications, e.g. transformers, circuit breakers, switchgear, radar waveguides, etc.

Piezoelectric direct discharge (PDD) plasma is a type of cold non-equilibrium plasma, generated by a direct gas discharge of a high voltage piezoelectric transformer. It can be ignited in air or other gases in a wide range of pressures, including atmospheric. Due to the compactness and the efficiency of the piezoelectric transformer, this method of plasma generation is particularly compact, efficient and cheap. It enables a wide spectrum of industrial, medical and consumer applications.

Immersion cooling IT cooling practice

Immersion cooling is an IT cooling practice by which IT components and other electronics, including complete servers and storage devices, are submerged in a thermally conductive dielectric liquid or coolant. Heat is removed from the system by circulating liquid into direct contact with hot components, then through cool heat exchangers. Fluids suitable for immersion cooling have very good insulating properties to ensure that they can safely come into contact with energized electronic components.

References

  1. 1 2 3 4 5 6 7 8 9 Naidu, S.; Kamaraju, V. (2009). High Voltage Engineering. Tata McGraw Hill Education Private Limited. p. 85. ISBN   9780070669284 . Retrieved July 24, 2015.
  2. "Lanxess Lubricant Additives". 8 November 2019.
  3. Walter Noll (2 December 2012). Chemistry and Technology of Silicones. Elsevier. pp. 468–. ISBN   978-0-323-14140-6.
  4. 1 2 "3M Fluorinert Electronic Liquid FC-72". 27 August 2019.
  5. 1 2 "3M Novec 649 Engineered Fluid".
  6. 1 2 "3M Novec 7100 Engineered Fluid".
  7. 1 2 3 Murphy, E. J.; Morgan, S. O. (October 1937). "The Dielectric Properties of Insulating Materials" (PDF). Bell System Technical Journal . 16 (4): 493–512. doi:10.1002/j.1538-7305.1937.tb00765.x. Archived from the original (PDF) on 2013-10-19. Retrieved September 27, 2020.