Liquid organic hydrogen carriers

Last updated
Scheme of an LOHC process for storing electrical energy Schema-Energiespeicherung ueber chemischer H2-Speicherung.png
Scheme of an LOHC process for storing electrical energy

Liquid organic hydrogen carriers (LOHC) are organic compounds that can absorb and release hydrogen through chemical reactions. LOHCs can therefore be used as storage media for hydrogen. In principle, every unsaturated compound (organic molecules with C-C double or triple bonds) can take up hydrogen during hydrogenation. The sequence of endothermal dehydrogenation followed by hydrogen purification is considered as the main drawback which limits the overall efficiency of the storage cycle. [1] LOHC shipping without heat recycling has an energy efficiency of 60-70%, depending on the dehydrogenation rate, which is equivalent to liquid hydrogen shipping. With heat recycling, the energy efficiency increase to 80-90%. [2] [3]

Contents

In 2020, Japan built up the world's first international hydrogen supply chain between Brunei and Kawasaki City utilizing toluene-based LOHC technology. [4] Hyundai Motor invests in the development for stationary and on-board LOHC-systems. [5]

Principle of LOHC-based hydrogen storage

To absorb hydrogen, the dehydrated form of LOHC (an unsaturated, mostly aromatic compound) reacts with the hydrogen in a hydrogenation reaction. The hydrogenation is an exothermic reaction and is carried out at elevated pressures (approx. 30-50 bar) and temperatures of approx. 150-200°C in the presence of a catalyst. The corresponding saturated compound is thereby formed, which can be stored or transported under ambient conditions. If the hydrogen is needed again, the now hydrogenated, hydrogen-rich form of the LOHC is dehydrogenated, with the hydrogen being released again from the LOHC. This reaction is endothermic and takes place at elevated temperatures (250-320°C) again in the presence of a catalyst. Before the hydrogen can be used, it may have to be cleaned of LOHC steam. To increase efficiency, the heat contained in the hot material flow exiting the release unit should be transferred to the cold material flow consisting of hydrogen-rich LOHC entering the release unit in order to keep the energy requirement for preheating it before the reaction low. In particular, the heat released by the hydrogenation reaction when the hydrogen is absorbed can in principle be used for heating purposes or as process heat. [6]

Requirements for LOHC materials

Determination of the degree of hydrogenation


Direct LOHC fuel cell

An alternative, innovative and highly promising approach to convert LOHC-bound hydrogen into electricity is proposed recently. [1] The new unloading sequence consists of an almost thermoneutral catalysed transfer hydrogenation step converting ketone (acetone) to secondary alcohol (2-propanol) by contacting hydrogen-rich carrier (H18-DBT), and the secondary alcohol is then directly consumed in a PEMFC (direct isopropanol fuel cell; DIPAFC). [7] It is a CO2 emission-free, external energy input-free, and safe sequence with no molecular hydrogen at any point during hydrogen releasing. The "direct LOHC fuel cell" based on the LOHC-DIPAFC coupling concept is a very attractive solution for the on-board generation of electric energy in mobile applications, [1] and it's driving researchers to focus on the topic. [8] [ original research? ]

Examples of LOHC materials

Toluene / methylcyclohexane

As early as the 1980s there were attempts with toluene, which is converted to methylcyclohexane by hydrogenation. [9] The basic idea of this variant came from the USA in 1975 and was further developed in 1979 at the Paul Scherrer Institute in Switzerland together with the ETH Zurich. Even then, the prototype of a truck was built that was powered by hydrogen from the dehydrogenation of methylcyclohexane. [10] [11] The entire circuit is known as the Methylcyclohexane-Toluene-Hydrogen system (MTH). [12]

Gravimetric hydrogen storage densities of methylcyclohexane and toluene (MCH-TOL) are 6.1 wt%, or volumetric hydrogen storage densities at 47 kg/m3 in ambient conditions, [13] [14] corresponding to 5.5 MJ/L hydrogen. [15] Although MCH is reasonably stable (enthalpy of dehydrogenation: 68 kJ/mol), it must be dehydrogenated at temperatures of 350 °C and hydrogenated at 150 °C. [13]

Chiyoda (Japan) uses MCH-TOL as the hydrogen carrier for its SPERA hydrogen delivery business. [16] According to reports for Chiyoda's demonstration plant, which has a production rate of 50 Nm3 per hour, the dehydrogenation of MCH happens at 350 °C and with a Pt/Al2O3 catalyst, with an MCH conversion rate greater than 95% and toluene selectivity higher than 99.9%. For the (de)hydrogenation of TOL/MCH, several catalysts including Ni, Pt group metals, and bimetallic Pt/Mo on different support materials have also been investigated. [3]

N-ethyl carbazole

Dibenzyltoluene

Dibenzyltoluene (DBT) is studied to circumvent the high melting temperature of N-ethylcarbazole (liquid phase between 68 and 270°C [17] ) and the high vapor pressure of toluene. Vapor pressure at 40°C of toluene is 7880 Pa and methylcyclohexane is 10900 Pa while DBT is 0.07 Pa and perhydro-dibenzyltoluene (H18-DBT) is 0.04 Pa. [17] This substance is currently being used as a heat transfer oil, for example, under the trade name Marlotherm SH. [18] Temperatures of approx. 300°C are necessary for dehydrogenation. However, dibenzyltoluene is superior to other carrier substances in many physico-chemical properties. [19] [20]

DBT hydrogenate into H18-DBT when exposed to platinum group metals at 140°C and can dehydrogenate at temperatures between 270°C and 320°C. The resulting DBT/H18-DBT mixture has a notable hydrogen storage capacity of 6.2wt%, is minimally toxic, and high thermal stability with ignition temperature at 450°C. [17] [3] [21] While the storage capacity is 6.2 wt% and the energy density is 1.9 kWh/L, considering the de-hydrogenation limitation the storage capacity is 6.0 wt% and the energy density 1.8 kWh/L. The price for dibenzyltoluene is around 4 €/kg. [17] DBT can be hydrogenated with hydrogen-containing gas mixtures which is especially attractive for large-scale applications because it can be integrate into industrial processes that already produce such gas mixtures. [22] Hydrogenation reactions can be done with catalysts like Pt and Ru, supported by Al2O3. For the dehydrogenation, Pd and Ru catalysts supported by carbon are used. [17] Companies like Hydrogenious Technologies GmbH in Germany and HySA Infrastructure in South Africa have adopted the DBT/H18-DBT system as LOHCs. The DBT/H18-DBT cost for the components for the hydrogenation process is $0.005 million USD/tonne for materials, $0.134 million USD/tonne for reactors, and $0.003 million USD/tonne for storage tanks. [3]

Other potential LOHCs

Implementation

Related Research Articles

<span class="mw-page-title-main">Hydrocarbon</span> Organic compound consisting entirely of hydrogen and carbon

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic; their odor is usually faint, and may be similar to that of gasoline or lighter fluid. They occur in a diverse range of molecular structures and phases: they can be gases, liquids, low melting solids or polymers.

<span class="mw-page-title-main">Formic acid</span> Simplest carboxylic acid (HCOOH)

Formic acid, systematically named methanoic acid, is the simplest carboxylic acid, and has the chemical formula HCOOH and structure H−C(=O)−O−H. It is an important intermediate in chemical synthesis and occurs naturally, most notably in some ants. Esters, salts and the anion derived from formic acid are called formates. Industrially, formic acid is produced from methanol.

<span class="mw-page-title-main">Hydrogenation</span> Chemical reaction between molecular hydrogen and another compound or element

Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures. Hydrogenation reduces double and triple bonds in hydrocarbons.

<span class="mw-page-title-main">Lithium aluminium hydride</span> Chemical compound

Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[AlH4] or LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.

In chemistry, dehydrogenation is a chemical reaction that involves the removal of hydrogen, usually from an organic molecule. It is the reverse of hydrogenation. Dehydrogenation is important, both as a useful reaction and a serious problem. At its simplest, it's a useful way of converting alkanes, which are relatively inert and thus low-valued, to olefins, which are reactive and thus more valuable. Alkenes are precursors to aldehydes, alcohols, polymers, and aromatics. As a problematic reaction, the fouling and inactivation of many catalysts arises via coking, which is the dehydrogenative polymerization of organic substrates.

<span class="mw-page-title-main">Steam reforming</span> Method for producing hydrogen and carbon monoxide from hydrocarbon fuels

Steam reforming or steam methane reforming (SMR) is a method for producing syngas (hydrogen and carbon monoxide) by reaction of hydrocarbons with water. Commonly natural gas is the feedstock. The main purpose of this technology is hydrogen production. The reaction is represented by this equilibrium:

<span class="mw-page-title-main">Water splitting</span> Chemical reaction

Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen:

<span class="mw-page-title-main">Catalytic reforming</span> Chemical process used in oil refining

Catalytic reforming is a chemical process used to convert petroleum refinery naphthas distilled from crude oil into high-octane liquid products called reformates, which are premium blending stocks for high-octane gasoline. The process converts low-octane linear hydrocarbons (paraffins) into branched alkanes (isoparaffins) and cyclic naphthenes, which are then partially dehydrogenated to produce high-octane aromatic hydrocarbons. The dehydrogenation also produces significant amounts of byproduct hydrogen gas, which is fed into other refinery processes such as hydrocracking. A side reaction is hydrogenolysis, which produces light hydrocarbons of lower value, such as methane, ethane, propane and butanes.

Aromatization is a chemical reaction in which an aromatic system is formed from a single nonaromatic precursor. Typically aromatization is achieved by dehydrogenation of existing cyclic compounds, illustrated by the conversion of cyclohexane into benzene. Aromatization includes the formation of heterocyclic systems.

A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. This is their essential function when incorporated into a membrane electrode assembly (MEA) of a proton-exchange membrane fuel cell or of a proton-exchange membrane electrolyser: separation of reactants and transport of protons while blocking a direct electronic pathway through the membrane.

Formic acid fuel cells (direct formic acid fuel cells or DFAFCs) are a subcategory of direct liquid-feed fuel cells (DLFCs), in which the liquid fuel is directly oxidized (electrochemically) at the anode instead of reforming to produce hydrogen. Formic acid-based fuel cells represent a promising energy supply system in terms of high volumetric energy density, theoretical energy efficiency, and theoretical open-circuit voltage. They are also able to overcome certain problems inherent to traditional hydrogen (H2) feed fuel cells such as safe handling, storage, and H2 transportation.

In chemistry, transfer hydrogenation is a chemical reaction involving the addition of hydrogen to a compound from a source other than molecular H2. It is applied in laboratory and industrial organic synthesis to saturate organic compounds and reduce ketones to alcohols, and imines to amines. It avoids the need for high-pressure molecular H2 used in conventional hydrogenation. Transfer hydrogenation usually occurs at mild temperature and pressure conditions using organic or organometallic catalysts, many of which are chiral, allowing efficient asymmetric synthesis. It uses hydrogen donor compounds such as formic acid, isopropanol or dihydroanthracene, dehydrogenating them to CO2, acetone, or anthracene respectively. Often, the donor molecules also function as solvents for the reaction. A large scale application of transfer hydrogenation is coal liquefaction using "donor solvents" such as tetralin.

Hydrogen production is the family of industrial methods for generating hydrogen gas. There are four main sources for the commercial production of hydrogen: natural gas, oil, coal, and electrolysis of water; which account for 48%, 30%, 18% and 4% of the world's hydrogen production respectively. Fossil fuels are the dominant source of industrial hydrogen. As of 2020, the majority of hydrogen (~95%) is produced by steam reforming of natural gas and other light hydrocarbons, partial oxidation of heavier hydrocarbons, and coal gasification. Other methods of hydrogen production include biomass gasification and methane pyrolysis. Methane pyrolysis and water electrolysis can use any source of electricity including renewable energy.

<span class="mw-page-title-main">Hydrogen storage</span> Methods of storing hydrogen for later use

Several methods exist for storing hydrogen. These include mechanical approaches such as using high pressures and low temperatures, or employing chemical compounds that release H2 upon demand. While large amounts of hydrogen are produced by various industries, it is mostly consumed at the site of production, notably for the synthesis of ammonia. For many years hydrogen has been stored as compressed gas or cryogenic liquid, and transported as such in cylinders, tubes, and cryogenic tanks for use in industry or as propellant in space programs. Interest in using hydrogen for on-board storage of energy in zero-emissions vehicles is motivating the development of new methods of storage, more adapted to this new application. The overarching challenge is the very low boiling point of H2: it boils around 20.268 K (−252.882 °C or −423.188 °F). Achieving such low temperatures requires expending significant energy.

Methylcyclohexane (cyclohexylmethane) is an organic compound with the molecular formula is CH3C6H11. Classified as saturated hydrocarbon, it is a colourless liquid with a faint odor. Methylcyclohexane is used as a solvent. It is mainly converted in naphtha reformers to toluene. Methylcyclohexane is also used in some correction fluids (such as White-Out) as a solvent.

<span class="mw-page-title-main">Reformed methanol fuel cell</span> Fuel Cell Type

Reformed Methanol Fuel Cell (RMFC) or Indirect Methanol Fuel Cell (IMFC) systems are a subcategory of proton-exchange fuel cells where, the fuel, methanol (CH3OH), is reformed, before being fed into the fuel cell.

Chemical vapor deposition of ruthenium is a method to deposit thin layers of ruthenium on substrates by Chemical vapor deposition (CVD).

Gábor Laurenczy is a Hungarian-Swiss chemist and academic. He is a Professor Emeritus at the École Polytechnique Fédérale de Lausanne. He is academician, External Member of the Hungarian Academy of Sciences.

Dehydrogenation of amine-boranes or dehydrocoupling of amine-boranes is a chemical process in main group and organometallic chemistry wherein dihydrogen is released by the coupling of two or more amine-borane adducts. This process is of due to the potential of using amine-boranes for hydrogen storage.

<span class="mw-page-title-main">Methylcyclohexene</span> Chemical compound

Methylcyclohexene refers to any one of three organic compounds consisting of cyclohexene with a methyl group substituent. The location of the methyl group relative to the cyclohexene double bond creates the three different structural isomers. These compounds are generally used as a reagent or intermediate to derive other organic compounds.

References

  1. 1 2 3 G. Sievi, D. Geburtig, T. Skeledzic, A. Bösmann, P. Preuster, O. Brummel, ... & J. Libuda (2019). Towards an efficient liquid organic hydrogen carrier fuel cell concept. In: Energy & Environmental Science , 12(7), 2305-2314.
  2. Wang, Hewu; Zhou, Xin; Ouyang, Minggao (26 October 2016). "Efficiency analysis of novel Liquid Organic Hydrogen Carrier technology and comparison with high pressure storage pathway". International Journal of Hydrogen Energy. 41 (40): 18062–18071. doi:10.1016/j.ijhydene.2016.08.003.
  3. 1 2 3 4 Abdin, Zainul; Tang, Chunguang; Liu, Yun; Catchpole, Kylie (September 2021). "Large-scale stationary hydrogen storage via liquid organic hydrogen carriers". iScience. 24 (9): 102966. doi: 10.1016/j.isci.2021.102966 .
  4. ‘World’s first international hydrogen supply chain’ realised between Brunei and Japan, RECHARGE, 2020-04-27.
  5. Hyundai Motor invests in Hydrogenious LOHC Technologies, Bioenergy International, 2020-06-04.
  6. D. Teichmann, K. Stark, K. Müller, G. Zöttl, P. Wasserscheid, W. Arlt: Energy storage in residential and commercial buildings via Liquid Organic Hydrogen Carriers (LOHC). Energy & Environmental Science, 2012, 5, 5, 9044–9054, doi: 10.1039/C2EE22070A.
  7. 2-propanol fuel cells, HI ERN.
  8. New systems for hydrogen chemical storage without molecular hydrogen.
  9. M. Taube, P. Taube, "A liquid organic carrier of hydrogen as a fuel for automobiles", In: Hydrogen energy progress; Proceedings of the Third World Hydrogen Energy Conference, Tokyo, Japan, June 23-26, 1980. Volume 2. (A81-42851 20-44) Oxford and New York, Pergamon Press, 1981, S. 1077–1085.
  10. M. Taube, D. Rippin, D.L. Cresswell, W. Knecht, N. Gruenenfelder, "A system of hydrogen-powered vehicles with liquid organic hydrides", International Journal of Hydrogen Energy, 1983, 8, 3, 213-225, doi: 10.1016/0360-3199(83)90067-8.
  11. M. Taube, D. Rippin, W. Knecht, D. Hakimifard, B. Milisavljevic, N. Gruenenfelder, "A prototype truck powered by hydrogen from organic liquid hydrides", International Journal of Hydrogen Energy, 1985, 10, 9, 595-599, doi: 10.1016/0360-3199(85)90035-7.
  12. Übersichtsbeitrag Energiespeicherung als Element einer sicheren Energieversorgung. In: Chemie Ingenieur Technik. 87, 2015, S. 17, doi : 10.1002/cite.201400183, dort S. 49. - Joint GCC-JAPAN Environment Symposia in 2013.
  13. 1 2 Andersson, Joakim; Grönkvist, Stefan (May 2019). "Large-scale storage of hydrogen". International Journal of Hydrogen Energy. 44 (23): 11901–11919. doi: 10.1016/j.ijhydene.2019.03.063 .
  14. Muthukumar, P.; Kumar, Alok; Afzal, Mahvash; Bhogilla, Satyasekhar; Sharma, Pratibha; Parida, Abhishek; Jana, Sayantan; Kumar, E Anil; Pai, Ranjith Krishna; Jain, I. P. (24 May 2023). "Review on large-scale hydrogen storage systems for better sustainability". International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2023.04.304.
  15. Usman, Muhammad R.; Cresswell, David L. (January 2013). "Options for on-Board Use of Hydrogen Based on the Methylcyclohexane–Toluene–Hydrogen System". International Journal of Green Energy. 10 (2): 177–189. doi:10.1080/15435075.2011.647168.
  16. "What is "SPERA HYDROGEN" system?". CHIYODA CORPORATION.
  17. 1 2 3 4 5 Niermann, Matthias; Beckendorff, Alexander; Kaltschmitt, Martin; Bonhoff, Klaus (8 March 2019). "Liquid Organic Hydrogen Carrier (LOHC) – Assessment based on chemical and economic properties". International Journal of Hydrogen Energy. 44 (13): 6631–6654. doi:10.1016/j.ijhydene.2019.01.199.
  18. "Marlotherm SH Heat Transfer Fluid | Eastman".
  19. N. Brückner, K. Obesser, A. Bösmann, D. Teichmann, W. Arlt, J. Dungs, P. Wasserscheid, Evaluation of Industrially Applied Heat-Transfer Fluids as Liquid Organic Hydrogen Carrier Systems, In: ChemSusChem , 2014, 7, 229–235, doi: 10.1002/cssc.201300426.
  20. C. Krieger, K. Müller, W. Arlt: Energetische Analyse von LOHC-Systemen als thermochemische Wärmespeicher. In: Chemie Ingenieur Technik. 86, 2014, S. 1441, doi : 10.1002/cite.201450058.
  21. Usman, Muhammad R. (1 October 2022). "Hydrogen storage methods: Review and current status". Renewable and Sustainable Energy Reviews. 167: 112743. doi:10.1016/j.rser.2022.112743.
  22. Jorschick, Holger; Bösmann, Andreas; Preuster, Patrick; Wasserscheid, Peter (9 October 2018). "Charging a Liquid Organic Hydrogen Carrier System with H 2 /CO 2 Gas Mixtures". ChemCatChem. 10 (19): 4329–4337. doi:10.1002/cctc.201800960.