Lithium-ion flow battery

Last updated

A lithium-ion flow battery is a flow battery that uses a form of lightweight lithium as its charge carrier. [1] The flow battery stores energy separately from its system for discharging. The amount of energy it can store is determined by tank size; its power density is determined by the size of the reaction chamber.

Contents

Dissolving a material changes its chemical behavior significantly. Flow batteries suspend grains of solid material in a liquid, which preserves its characteristics, making lithium's high energy density available to flow systems.

Lithium polysulfide

One device uses dissolved sulfur as the cathode, lithium metal as the anode and an organic solvent as the electrolyte. [2] Officially "membraneless", it uses a coating to separate anode from cathode. It uses a single tank and pump and reacts the LiS with lithium to produce power. The device operated for more than 2000 cycles without substantial degradation. [1] [3]

When discharging, the lithium polysulfide absorbs lithium ions; releasing them when charging. [1] The demonstration device yielded energy density of 97 Wh/kg and 108 Wh/L with a 5M Li
2
S
8
catholyte. [2]

LiFePO4

Reversible delithiation/lithiation of LiFePO
4
was successfully demonstrated using ferrocene derivatives. This device keeps the energy storage materials stored in separate tanks. The liquids remain stationary during operation. The device incorporated a lithium-ion permeable membrane. [4]

Lithium iodine

A cathode-flow lithium-iodine (Li–I) battery uses the triiodide/iodide (I
3
/I) redox couple in aqueous solution. It has energy density of 0.33 kWh/kg because of the solubility of LiI in aqueous solution (≈8.2M) and its power density of 130 mW/cm2 at a current rate of 60 mA/cm2, 328 K. In operation, the battery attains 90% of the theoretical storage capacity, coulombic efficiency of 100%±1% in 2–20 cycles, and cyclic performance of >99% capacity retention for 20 cycles, up to total capacity of 100 mAh. [5]

LiTi2(PO4)3–LiFePO4

A semi-solid cell based on the LiTi
2
(PO
4
)
3
–LiFePO
4
couple utilizes fluid electrodes that are electronically conductive. Simultaneous advection and electrochemical transport separates flow-induced losses from those due to underlying side reactions. Plug flow is used to achieve energy efficiency with non-Newtonian flow electrodes.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion battery or Li-ion battery is a type of rechargeable battery composed of cells in which lithium ions move from the negative electrode through an electrolyte to the positive electrode during discharge and back when charging. Li-ion cells use an intercalated lithium compound as the material at the positive electrode and typically graphite at the negative electrode. Li-ion batteries have a high energy density, no memory effect and low self-discharge. Cells can be manufactured to prioritize either energy or power density. They can however, be a safety hazard since they contain flammable electrolytes and, if damaged or incorrectly charged, can lead to explosions and fires.

<span class="mw-page-title-main">Flow battery</span> Type of electrochemical cell

A flow battery, or redox flow battery, is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane. Ion transfer inside the cell occurs through the membrane while both liquids circulate in their own respective space. Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.0 to 2.43 volts. The energy capacity is a function of the electrolyte volume and the power is a function of the surface area of the electrodes.

<span class="mw-page-title-main">Lithium iron phosphate battery</span> Type of rechargeable battery

The lithium iron phosphate battery or LFP battery is a type of lithium-ion battery using lithium iron phosphate as the cathode material, and a graphitic carbon electrode with a metallic backing as the anode. The energy density of an LFP battery is lower than that of other common lithium ion battery types such as nickel manganese cobalt (NMC) and nickel cobalt aluminum (NCA), and also has a lower operating voltage; CATL's LFP batteries are currently at 125 watt hours (Wh) per kg, up to possibly 160 Wh/kg with improved packing technology, while BYD's LFP batteries are at 150 Wh/kg, compared to over 300 Wh/kg for the highest NMC batteries. Notably, the energy density of Panasonic’s “2170” NCA batteries used in 2020 in Tesla’s Model 3 is around 260 Wh/kg, which is 70% of its "pure chemicals" value.

<span class="mw-page-title-main">Nanobatteries</span> Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

Nanodot can refer to several technologies which use nanometer-scale localized structures. Nanodots generally exploit properties of quantum dots to localize magnetic or electrical fields at very small scales. Applications for nanodots could include high-density information storage, energy storage, and light-emitting devices.

<span class="mw-page-title-main">Lithium iron phosphate</span> Chemical compound

Lithium iron phosphate or lithium ferro-phosphate (LFP) is an inorganic compound with the formula LiFePO
4
. It is a gray, red-grey, brown or black solid that is insoluble in water. The material has attracted attention as a component of lithium iron phosphate batteries, a type of Li-ion battery. This battery chemistry is targeted for use in power tools, electric vehicles, solar energy installations and more recently large grid-scale energy storage.

<span class="mw-page-title-main">Lithium-ion capacitor</span> Hybrid type of capacitor

A lithium-ion capacitor (LIC) is a hybrid type of capacitor classified as a type of supercapacitor. It is called a hybrid because the anode is the same as those used in lithium-ion batteries and the cathode is the same as those used in supercapacitors. Activated carbon is typically used as the cathode. The anode of the LIC consists of carbon material which is often pre-doped with lithium ions. This pre-doping process lowers the potential of the anode and allows a relatively high output voltage compared to other supercapacitors.

<span class="mw-page-title-main">Lithium–sulfur battery</span>

The lithium–sulfur battery is a type of rechargeable battery. It is notable for its high specific energy. The low atomic weight of lithium and moderate atomic weight of sulfur means that Li–S batteries are relatively light. They were used on the longest and highest-altitude unmanned solar-powered aeroplane flight by Zephyr 6 in August 2008.

A solid-state battery is a battery technology that uses solid electrodes and a solid electrolyte, instead of the liquid or polymer gel electrolytes found in lithium-ion or lithium polymer batteries.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

A metal–air electrochemical cell is an electrochemical cell that uses an anode made from pure metal and an external cathode of ambient air, typically with an aqueous or aprotic electrolyte.

A potassium-ion battery or K-ion battery is a type of battery and analogue to lithium-ion batteries, using potassium ions for charge transfer instead of lithium ions. It was invented by the Iranian/American chemist Ali Eftekhari in 2004.

The sodium-ion battery (NIB or SIB) is a type of rechargeable battery analogous to the lithium-ion battery but using sodium ions (Na+) as the charge carriers. Its working principle and cell construction are almost identical with those of commercially widespread lithium-ion battery types, but sodium compounds are used instead of lithium compounds.

Aluminium-ion batteries are a class of rechargeable battery in which aluminium ions serve as charge carriers. Aluminium can exchange three electrons per ion. This means that insertion of one Al3+ is equivalent to three Li+ ions. Thus, since the ionic radii of Al3+ (0.54 Å) and Li+ (0.76 Å) are similar, significantly higher numbers of electrons and Al3+ ions can be accepted by cathodes with little damage. Al has 50 times (23.5 megawatt-hours m-3) the energy density of Li and is even higher than coal.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

Lithium hybrid organic batteries are an energy storage device that combines lithium with an organic polymer. For example, polyaniline vanadium (V) oxide (PAni/V2O5) can be incorporated into the nitroxide-polymer lithium iron phosphate battery, PTMA/LiFePO4. Together, they improve the lithium ion intercalation capacity, cycle life, electrochemical performances, and conductivity of batteries.

Oxycarbide glass, also referred to as silicon oxycarbide, is a type of glass that contains oxygen and carbon in addition to silicon dioxide. It is created by substituting some oxygen atoms with carbon atoms. This glass may contain particles of amorphous carbon, and silicon carbide. SiOC materials of varying stoichiometery are attractive owing to their generally high density, hardness and high service temperatures. Through diverse forming techniques high performance parts in complex shapes can be achieved. Unlike pure SiC, the versatile stoichiometry of SiOC offers further avenues to tune physical properties through appropriate selection of processing parameters.

<span class="mw-page-title-main">Semi-solid flow battery</span>

A semi-solid flow battery is a type of flow battery using solid battery active materials or involving solid species in the energy carrying fluid. A research team in MIT proposed this concept using lithium-ion battery materials. In such a system, both positive (cathode) and negative electrode (anode) consist of active material particles with carbon black suspended in liquid electrolyte. Active material suspensions are stored in two energy storage tanks. The suspensions are pumped into the electrochemical reaction cell when charging and discharging. This design takes advantage of both the designing flexibility of flow batteries and the high energy density active materials of lithium-ion batteries.

Calcium (ion) batteries are energy storage and delivery technologies (i.e., electro–chemical energy storage) that employ calcium ions (cations), Ca2+, as the active charge carrier in the electrolytes as well as in the electrodes (anode and cathode). Calcium (ion) batteries remain an active area of research, with studies and work persisting in the discovery and development of electrodes and electrolytes that enable stable, long-term battery operation.

<span class="mw-page-title-main">History of the lithium-ion battery</span>

This is a history of the lithium-ion battery.

References

  1. 1 2 3 "Researchers Design a New Low Cost Lithium-Polysulfide Flow Battery". SciTech Daily. 2013-05-24. Retrieved 2013-12-27.
  2. 1 2 "New lithium polysulfide flow battery for large-scale energy storage". Green Car Congress. 2013-04-25. doi:10.1039/C3EE00072A . Retrieved 2013-12-27.{{cite journal}}: Cite journal requires |journal= (help)
  3. Yang, Y.; Zheng, G.; Cui, Y. (2013). "A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage". Energy & Environmental Science. 6 (5): 1552. doi:10.1039/C3EE00072A.
  4. Huang, Q.; Li, H.; Grätzel, M.; Wang, Q. (2013). "Reversible chemical delithiation/lithiation of LiFePO4: Towards a redox flow lithium-ion battery". Physical Chemistry Chemical Physics. 15 (6): 1793–1797. Bibcode:2013PCCP...15.1793H. doi:10.1039/C2CP44466F. PMID   23262995.
  5. Zhao, Y.; Byon, H. R. (2013). "High-Performance Lithium-Iodine Flow Battery". Advanced Energy Materials. 3 (12): 1630. doi:10.1002/aenm.201300627. S2CID   98455413.