MIT-SHM

Last updated
MIT-SHM
Original author(s) X.Org Foundation
Stable release
1.0 / 1991;32 years ago (1991)

The MIT Shared Memory Extension or MIT-SHM or XShm is an X Window System extension for exchange of image data between client and server using shared memory (usually /dev/shm). The mechanism only works when both pieces are on the same computer.

The basic capability provided is that of shared memory XImages. This is essentially a version of the ximage interface where the actual image data is stored in a SysV shared memory segment, and thus need not be transferred across the socket to the X server. For large images, use of this facility can result in some real performance increases.

Additionally, some implementations provide shared memory pixmaps. These are two-dimensional arrays of pixels in a format specified by the X server, where the image data is stored in the shared memory segment. Through use of shared memory pixmaps, it is possible to change the contents of these pixmaps without using any Xlib routines at all. Shared memory pixmaps can only be supported when the X server can use regular virtual memory for pixmap data; if the pixmaps are stored in the on-board memory of graphics hardware, an application will not be able to share them with the server. [1]

In the 1.15 release of the X.org server [2] the MIT-SHM extension gains two additional requests: 'X_ShmAttachFd' and 'X_ShmCreateSegment', to be able to pass shared memory through file descriptors from client to server and from server to client, reducing the number of copy operations further. [3]

Related Research Articles

<span class="mw-page-title-main">X Window System</span> Windowing system for bitmap displays on UNIX-like systems

The X Window System is a windowing system for bitmap displays, common on Unix-like operating systems.

<span class="mw-page-title-main">Squid (software)</span> Caching and forwarding HTTP web proxy

Squid is a caching and forwarding HTTP proxy. It has a wide variety of uses, including speeding up a web server by caching repeated requests, caching World Wide Web (WWW), Domain Name System (DNS), and other lookups for a group of people sharing network resources, and aiding security by filtering traffic. Although used for mainly HTTP and File Transfer Protocol (FTP), Squid includes limited support for several other protocols including Internet Gopher, Secure Sockets Layer (SSL), Transport Layer Security (TLS), and Hypertext Transfer Protocol Secure (HTTPS). Squid does not support the SOCKS protocol, unlike Privoxy, with which Squid can be used in order to provide SOCKS support.

In computer security, challenge–response authentication is a family of protocols in which one party presents a question ("challenge") and another party must provide a valid answer ("response") to be authenticated.

X.Org Server is the free and open-source implementation of the X Window System (X11) display server stewarded by the X.Org Foundation.

<span class="mw-page-title-main">Direct Rendering Infrastructure</span> Framework

The Direct Rendering Infrastructure (DRI) is the framework comprising the modern Linux graphics stack which allows unprivileged user-space programs to issue commands to graphics hardware without conflicting with other programs. The main use of DRI is to provide hardware acceleration for the Mesa implementation of OpenGL. DRI has also been adapted to provide OpenGL acceleration on a framebuffer console without a display server running.

x11vnc is a Virtual Network Computing (VNC) server program. It allows remote access from a remote client to a computer hosting an X Window session and the x11vnc software, continuously polling the X server's frame buffer for changes. This allows the user to control their X11 desktop from a remote computer either on the user's own network, or from over the Internet as if the user were sitting in front of it. x11vnc can also poll non-X11 frame buffer devices, such as webcams or TV tuner cards, iPAQ, Neuros OSD, the Linux console, and the Mac OS X graphics display. x11vnc is part of the LibVNCServer project and is free software available under the GNU General Public License. x11vnc was written by Karl Runge.

Pseudo-transparency is a term used for X Window System clients that simulate the appearance of translucency or transparency by manipulating the same pixmap that has been drawn on the root window, or by instructing the X Server that the Background Pixmap should be inherited from the window's parent.

<span class="mw-page-title-main">Diskless node</span> Computer workstation operated without disk drives

A diskless node is a workstation or personal computer without disk drives, which employs network booting to load its operating system from a server.

In computing, the X Window System is a network-transparent windowing system for bitmap displays. This article details the protocols and technical structure of X11.

The Direct Rendering Manager (DRM) is a subsystem of the Linux kernel responsible for interfacing with GPUs of modern video cards. DRM exposes an API that user-space programs can use to send commands and data to the GPU and perform operations such as configuring the mode setting of the display. DRM was first developed as the kernel-space component of the X Server Direct Rendering Infrastructure, but since then it has been used by other graphic stack alternatives such as Wayland and standalone applications and libraries such as SDL2 and Kodi.

<span class="mw-page-title-main">X Rendering Extension</span>

The X Rendering Extension is an extension to the X11 core protocol to implement image compositing in the X server, to allow an efficient display of transparent images.

X-Video Motion Compensation (XvMC), is an extension of the X video extension (Xv) for the X Window System. The XvMC API allows video programs to offload portions of the video decoding process to the GPU video-hardware. In theory this process should also reduce bus bandwidth requirements. Currently, the supported portions to be offloaded by XvMC onto the GPU are motion compensation and inverse discrete cosine transform (iDCT) for MPEG-2 video. XvMC also supports offloading decoding of mo comp, iDCT, and VLD for not only MPEG-2 but also MPEG-4 ASP video on VIA Unichrome hardware.

The X Window System core protocol is the base protocol of the X Window System, which is a networked windowing system for bitmap displays used to build graphical user interfaces on Unix, Unix-like, and other operating systems. The X Window System is based on a client–server model: a single server controls the input/output hardware, such as the screen, the keyboard, and the mouse; all application programs act as clients, interacting with the user and with the other clients via the server. This interaction is regulated by the X Window System core protocol. Other protocols related to the X Window System exist, both built at the top of the X Window System core protocol or as separate protocols.

In computing, a dynamic linker is the part of an operating system that loads and links the shared libraries needed by an executable when it is executed, by copying the content of libraries from persistent storage to RAM, filling jump tables and relocating pointers. The specific operating system and executable format determine how the dynamic linker functions and how it is implemented.

X Image Extension, or XIE was an extension to the X Window System to enhance its graphics capability. It was intended to provide a powerful mechanism for the transfer and display of virtually any image on any X-capable hardware. It was first released with X11R6 in 1994. It is no longer included in the X11 reference distribution, having been removed with X11R6.7 in 2004.

In computing, a bitmap is a mapping from some domain to bits. It is also called a bit array or bitmap index.

Microsoft SQL Server is a proprietary relational database management system developed by Microsoft. As a database server, it is a software product with the primary function of storing and retrieving data as requested by other software applications—which may run either on the same computer or on another computer across a network. Microsoft markets at least a dozen different editions of Microsoft SQL Server, aimed at different audiences and for workloads ranging from small single-machine applications to large Internet-facing applications with many concurrent users.

<span class="mw-page-title-main">Wayland (protocol)</span> Display system intended to replace X11

Wayland is a communication protocol that specifies the communication between a display server and its clients, as well as a C library implementation of that protocol. A display server using the Wayland protocol is called a Wayland compositor, because it additionally performs the task of a compositing window manager.

<span class="mw-page-title-main">DIET</span>

DIET is a software for grid-computing. As middleware, DIET sits between the operating system and the application software. DIET was created in 2000. It was designed for high-performance computing. It is currently developed by INRIA, École Normale Supérieure de Lyon, CNRS, Claude Bernard University Lyon 1, SysFera. It is open-source software released under the CeCILL license.

<span class="mw-page-title-main">Shared memory</span> Computer memory that can be accessed by multiple processes

In computer science, shared memory is memory that may be simultaneously accessed by multiple programs with an intent to provide communication among them or avoid redundant copies. Shared memory is an efficient means of passing data between programs. Depending on context, programs may run on a single processor or on multiple separate processors.

References

  1. "LCA2013: The real story behind Wayland and X by Daniel Stone". Archived from the original on 2021-12-14.
  2. Keith Packard (1 November 2013). "[ANNOUNCE] xorg-server 1.14.99.901".
  3. Packard, Keith (9 January 2014). Zero-Copy Compositing — Research to Reality (Speech). Linux.conf.au 2014. Perth, Australia. 15:20 minutes in. Archived from the original on 2021-12-14. Retrieved 3 February 2014.