Maximum segment size

Last updated

The maximum segment size (MSS) is a parameter of the Options field of the TCP header that specifies the largest amount of data, specified in bytes, that a computer or communications device can receive in a single TCP segment. It does not count the TCP header or the IP header (unlike, for example, the MTU for IP datagrams). [1] :§3.7.1 The IP datagram containing a TCP segment may be self-contained within a single packet, or it may be reconstructed from several fragmented pieces; either way, the MSS limit applies to the total amount of data contained in the final, reconstructed TCP segment.

Contents

To avoid fragmentation in the IP layer, a host must specify the maximum segment size as equal to the largest IP datagram that the host can handle minus the IP and TCP header sizes. Therefore, IPv4 hosts are required to be able to handle an MSS of 536 octets (= 576 - 20 - 20) and IPv6 hosts are required to be able to handle an MSS of 1220 octets (= 1280 - 40 - 20). [1] :§3.7.1

Small MSS values will reduce or eliminate IP fragmentation but will result in higher overhead. [2]

Each direction of data flow can use a different MSS.

For most computer users, the MSS option is established by the operating system.

TCP options size (Variable 0–320 bits, in units of 32 bits) must be deducted from MSS size if TCP options are enabled. For example, TCP Time Stamps are enabled by default on Linux platforms.

Default value

The default TCP Maximum Segment Size is for IPv4 is 536. For IPv6 it is 1220. [1] :§3.7.1 Where a host wishes to set the maximum segment size to a value other than the default, the maximum segment size is specified as a TCP option, initially in the TCP SYN packet during the TCP handshake. The value cannot be changed after the connection is established.

Inter-Layer Communication

In order to notify MSS to the other end, an inter-layer communication is done as follows: [3] :§11

While sending TCP segments to the other end, an inter-layer communication is done as follows: [3] :§11

MSS and MTU

MSS is sometimes conflated with MTU/PMTU, which is a characteristic of the underlying link layer, while MSS applies specifically to TCP and hence the transport layer. The two are similar in that they limit the maximum size of the payload carried by their respective protocol data unit (frame for MTU, TCP segment for MSS), and related since MSS cannot exceed the MTU for its underlying link (taking into account the overhead of any headers added by the layers below TCP). However, the difference, in addition to applying to different layers, is that MSS can have a different value in either direction and also that frames exceeding the MTU may cause packets (which encapsulate segments) to be fragmented by the network layer, while segments exceeding the MSS are simply discarded.

Further reading

See also

Related Research Articles

The Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by network devices, including routers, to send error messages and operational information indicating success or failure when communicating with another IP address. For example, an error is indicated when a requested service is not available or that a host or router could not be reached. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.

<span class="mw-page-title-main">IPv4</span> Fourth version of the Internet Protocol

Internet Protocol version 4 (IPv4) is the first version of the Internet Protocol (IP) as a standalone specification. It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production on SATNET in 1982 and on the ARPANET in January 1983. It is still used to route most Internet traffic today, even with the ongoing deployment of Internet Protocol version 6 (IPv6), its successor.

<span class="mw-page-title-main">IPv6</span> Version 6 of the Internet Protocol

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and was intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.

The Internet Protocol (IP) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

In computer networking, the maximum transmission unit (MTU) is the size of the largest protocol data unit (PDU) that can be communicated in a single network layer transaction. The MTU relates to, but is not identical to the maximum frame size that can be transported on the data link layer, e.g., Ethernet frame.

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.

Time to live (TTL) or hop limit is a mechanism which limits the lifespan or lifetime of data in a computer or network. TTL may be implemented as a counter or timestamp attached to or embedded in the data. Once the prescribed event count or timespan has elapsed, data is discarded or revalidated. In computer networking, TTL prevents a data packet from circulating indefinitely. In computing applications, TTL is commonly used to improve the performance and manage the caching of data.

In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.

In computing, Internet Protocol Security (IPsec) is a secure network protocol suite that authenticates and encrypts packets of data to provide secure encrypted communication between two computers over an Internet Protocol network. It is used in virtual private networks (VPNs).

The Address Resolution Protocol (ARP) is a communication protocol used for discovering the link layer address, such as a MAC address, associated with a given internet layer address, typically an IPv4 address. This mapping is a critical function in the Internet protocol suite. ARP was defined in 1982 by RFC 826, which is Internet Standard STD 37.

<span class="mw-page-title-main">IP fragmentation</span> Process that breaks IP packets into smaller pieces

IP fragmentation is an Internet Protocol (IP) process that breaks packets into smaller pieces (fragments), so that the resulting pieces can pass through a link with a smaller maximum transmission unit (MTU) than the original packet size. The fragments are reassembled by the receiving host.

A ping of death is a type of attack on a computer system that involves sending a malformed or otherwise malicious ping to a computer. In this attack, a host sends hundreds of ping requests with a packet size that is large or illegal to another host to try to take it offline or to keep it preoccupied responding with ICMP Echo replies.

In packet-switched computer networks, a jumbogram is an internet-layer packet exceeding the standard maximum transmission unit (MTU) of the underlying network technology. In contrast, large packets for link-layer technologies are referred to as jumbo frames.

Path MTU Discovery (PMTUD) is a standardized technique in computer networking for determining the maximum transmission unit (MTU) size on the network path between two Internet Protocol (IP) hosts, usually with the goal of avoiding IP fragmentation. PMTUD was originally intended for routers in Internet Protocol Version 4 (IPv4). However, all modern operating systems use it on endpoints. In IPv6, this function has been explicitly delegated to the end points of a communications session. As an extension to the standard path MTU discovery, a technique called Packetization Layer Path MTU Discovery works without support from ICMP.

The internet layer is a group of internetworking methods, protocols, and specifications in the Internet protocol suite that are used to transport network packets from the originating host across network boundaries; if necessary, to the destination host specified by an IP address. The internet layer derives its name from its function facilitating internetworking, which is the concept of connecting multiple networks with each other through gateways.

The Internet checksum, also called the IPv4 header checksum is a checksum used in version 4 of the Internet Protocol (IPv4) to detect corruption in the header of IPv4 packets. It is carried in the IP packet header, and represents the 16-bit result of summation of the header words.

An IP header is header information at the beginning of an Internet Protocol (IP) packet. An IP packet is the smallest message entity exchanged via the Internet Protocol across an IP network. IP packets consist of a header for addressing and routing, and a payload for user data. The header contains information about IP version, source IP address, destination IP address, time-to-live, etc. The payload of an IP packet is typically a datagram or segment of the higher-level transport layer protocol, but may be data for an internet layer or link layer instead.

IP in IP is an IP tunneling protocol that encapsulates one IP packet in another IP packet. To encapsulate an IP packet in another IP packet, an outer header is added with Source IP, the entry point of the tunnel, and Destination IP, the exit point of the tunnel. While doing this, the inner packet is unmodified. The Don't Fragment and the Type Of Service fields should be copied to the outer packet. If the packet size, including the outer header, is greater than the Path MTU, the encapsulator fragments the packet. The decapsulator will reassemble the packet.

An IPv6 packet is the smallest message entity exchanged using Internet Protocol version 6 (IPv6). Packets consist of control information for addressing and routing and a payload of user data. The control information in IPv6 packets is subdivided into a mandatory fixed header and optional extension headers. The payload of an IPv6 packet is typically a datagram or segment of the higher-level transport layer protocol, but may be data for an internet layer or link layer instead.

IPv4 Residual Deployment (4rd) is an IPv6 transition mechanism for Internet service providers for deployment of Internet Protocol version 6 (IPv6), while maintaining IPv4 service to customers. The protocol and sample applications are specified in RFC 7600.

References

  1. 1 2 3 W. Eddy, ed. (August 2022). Transmission Control Protocol (TCP). Internet Engineering Task Force. doi: 10.17487/RFC9293 . ISSN   2070-1721. STD 7. RFC 9293.Internet Standard 7. Obsoletes RFC  793, 879, 2873, 6093, 6429, 6528 and 6691. Updates RFC  1011, 1122 and 5961.
  2. The TCP/IP Guide, TCP Maximum Segment Size (MSS) and Relationship to IP Datagram Size
  3. 1 2 J. Postel (November 1983). The TCP Maximum Segment Size and Related Topics. Network Working Group. doi: 10.17487/RFC0879 . RFC 879.Obsolete. Obsoleted by RFC  7805 and 9293. Updated by RFC  6691.