Metallocarbohedryne

Last updated

A metallocarbohedryne (met-car) is any one of a family of chemical compounds with the generic molecular formula M
8
C
12
, where M is a transition metal such as titanium, vanadium, zirconium, niobium, hafnium, molybdenum, chromium, or iron.

Contents

These compounds have similar properties and a similar molecular structure, with the eight metal atoms at the corners of a somewhat distorted cube, and the twelve carbon atoms, in pairs, placed diagonally across the faces of the cube. The structure can also be described as two intersecting tetrahedra of metal atoms, with the carbon atoms placed in pairs along the edges of one tetrahedron. They have been extensively studied in the gas phase, and sometimes dispersed in solid materials, but so far have not been produced in bulk or in solution. [1] Nevertheless, they have attracted interest because of their stability and symmetry, a relatively low ionization potential, delayed extraction, and possibly interesting magnetic properties. [2] Some authors suggest that they may eventually find applications in electronics and catalysis. [2]

The name is also used for the corresponding cations M
8
Cn+
12
and anions M
8
Cn-
12
. [3]

The first papers used the name metallo-carbohedrene (with or without the hyphen) for this type of compound. [3] [4] [5]

History

The earliest known member of this family is the cation Ti
8
C+
12
, discovered by Guo, kerns, and Castleman in 1992 while researching the dehydrogenation of various hydrocarbons (including methane, acetylene, ethylene, benzene, and propylene) with titanium atoms, in the gas phase. Although fullerenes like C
60
were already known, that may have been the first cage-like molecule with metal atoms replacing carbon at some corners of the mesh. They observed that the cluster would bind eight ammonia molecules, indicating that the eight titanium atoms were exposed. [3] They also observed the analogous cations with vanadium, zirconium, or hafnium substituted for titanium, the corresponding neutral molecules, and the anion V
8
C
12
. [4]

Synthesis

Metallocarbohedrynes can be readily generated by vaporizing the desired metal with a laser, in an atmosphere containing the suitable hydrocarbon. [3] The technique can produce mixed clusters, such as Ti
8-x
Zr
x
C
12
. [1]

They have been also detected, at a concentration of 1% or less, in the soot generated by an electric arc between two Ti-C electrodes. [1]

Structure

The structure of these clusters has been extensively investigated since their discovery. At first, the 20 atoms of Ti
8
C+
12
were conjectured to be arranged as the vertices of a dodecahedron, with the titanium atoms at the corners of a cube, and two carbon atom pairs, on opposite faces, aligned with each set of four parallel edges of the cube. This structure was conjectured to be analogous to that of the hypothetical dodecahedral fullerene C
20
. [3] However, this claim was soon disputed by Linus Pauling [6] who proposed an alternative arrangement—with the titanium atoms still at the corners of a cube, but with the carbon atoms pushed inwards so as to be nearly coplanar with the faces of that cube.

Theoretical studies

The first ab initio theoretical investigations of the structure of Ti
8
C
12
(by Li and others, Methfessel and others, in 1993) indicated a slightly distorted version of the dodecahedron proposed by Guo and others, with C-C distances 139 pm and Ti-C distances 199 pm. In this model, the eight titanium atoms were still equivalent and located at the corners of a cube, with C-C pairs parallel to edges, so that the molecule would have the symmetry group . Nevertheless, they found the atoms are almost equidistant from the center, (260 pm for C, 262 pm for Ti). The electronic structure however was quite unlike that of graphite and C
60
. [7] [8]

Several other models were proposed. Ceulemans and Fowler proposed a ring of 12 carbon atoms capped by two Ti
4
tetrahedra. [1] Khan proposed a cage of 12 carbons at the vertices of a cuboctahedron, surrounded by an elongated cage of metal atoms. [1]

Eventually a consensus was reached on a structure proposed by Dance and others, in which the metal atoms are divided in two groups of four ("outer" or "o-", and "inner" or "i-"), at the vertices of two intersecting concentric regular tetrahedra, with different radii and opposite orientations; and the six carbon pairs are aligned with the edges of the larger tetrahedron. This structure can be seen as a deformation of the original proposal, by pulling four vertices of the cube slightly outwards, and rotating the carbon pairs by 45 degrees. Its symmetry group is instead of , [5] [9] and it was predicted to have considerably lower energy (by 300 kcal/mol). Indeed, the formation of Ti
8
C
12
with the Dance structure was predicted to be energetically favored (exothermic) relative to metallic titanium and graphite. [1]

Acceptance of this structure was delayed because the yields of the various clusters Ti
8-x
Zr
x
C
12
in Guo's process suggested that the eight metal atom sites were equivalent. In particular, the cluster Ti
4
Zr
4
C
12
did not seem to be exceptionally stable. However, the energy difference between placing the four zirconium atoms in the inner positions, rather than the outer ones, was eventually computed to be only 0.5 kcal/mol. [1]

In 2003, Hou and others predicted a slight displacement of two of the carbon pairs, that reduced the symmetry group to [10] A similar conclusion had been reached by Chen and others. However, later studies by Lou and Nordlander concluded that the form had lower energy (by about 70 kcal/mol) [1] However, the zinc cluster Zn
8
C
12
was predicted to have the symmetrical dodecahedral () structure suggested by Guo for the titanium cluster. [1]

Electronically, Ti
8
C
12
is believed to have a metallic character, with 80 delocalized valence electrons. Its static polarizability was computed to be of the same order of magnitude as that of the fullerene C
60
. [1]

Spectroscopy and ionization

Pilgrim and Duncan observed in 1993 that Ti
8
C+
12
can be dissociated by visible light. Ti
7
C+
12
is a fragment of Ti
8
C+
12
[11]

In 1998, Sakurai and Castleman measured ionization potentials of Ti
8-x
Zr
x
C
12
via near threshold photoionization spectroscopy. In particular, they got 4.40  eV of for Ti
8
C
12
and 3.95 eV for Zr
8
C
12
. The former value was said to be more consistent with the structure than the one. [12]

The infrared spectrum of neutral Ti
8
C
12
and of Ti
8
C+
12
cations was studied by van Heijnsbergen and others, starting 1999. They measured clusters in the gas phase, accumulated as cations in an ion trap. They saw evidence that the loss of one electron from Ti
8
C
12
to Ti
8
C+
12
does not change the structure significantly. [13] [14]

In 2004, Martínez and others computed from theoretical models the optical absorption spectrum of Ti
8
C
12
and V
8
C
12
. They predicted a broad spectrum for both, with high absorption starting at about 8 eV and centered around 12–14 eV. [2]

Reactions

The chemistry of Ti
8
C
12
and it analogs was studied in the gas phase, already by Castleman's and others. After creation, the ionized clusters were separated from other species by mass spectrometry, and injected into a drift tube containing the gaseous reactant, diluted in helium. [1]

With theoretical computations, Huo and others predicted that the clusters Ti
8
C
12
and Mo
8
C
12
could bind 4 carbonyls, at outer metal atoms. [10]

Potential applications

While the clusters have yet to be produced in bulk, they have been investigated theoretically for possible use as catalysts.

Desulfurization of oil

Specifically, in 2004 Liu and others have simulated the decomposition of thiophene C
4
H
4
S
by three hydrogen molecules to 2-butene C
4
H
8
and hydrogen disulfide H
2
S
, catalyzed by a neutral Ti
8
C
12
. This reaction is an important step in the removal of sulfur from oil. They predicted that the first H
2
molecule would spontaneously dissociate in contact with the C
2
pairs, and each H atom would then migrate to the adjacent outer titanium atom ("o-Ti"). The thiophene would then react exothermally with each H atom in turn, yielding a butadiene attached to an o-Ti and the sulfur atom attached at the nearby inner titanium ("i-Ti") atom. A second H
2
molecule would then dissociate at the o-Ti site and turn butadiene into 2-butene. A third H
2
would dissociate at an o-Ti site, and the two atoms would migrate to the i-Ti atom bearing the sulfur atom, and convert it into H
2
S
. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Carbide</span> Inorganic compound group

In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece.

<span class="mw-page-title-main">Zirconium</span> Chemical element, symbol Zr and atomic number 40

Zirconium is a chemical element; it has symbol Zr and atomic number 40. The name zirconium is derived from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian zargun. It is a lustrous, grey-white, strong transition metal that closely resembles hafnium and, to a lesser extent, titanium. Zirconium is mainly used as a refractory and opacifier, although small amounts are used as an alloying agent for its strong resistance to corrosion. Zirconium forms a variety of inorganic and organometallic compounds such as zirconium dioxide and zirconocene dichloride, respectively. Five isotopes occur naturally, four of which are stable. Zirconium compounds have no known biological role.

A Ziegler–Natta catalyst, named after Karl Ziegler and Giulio Natta, is a catalyst used in the synthesis of polymers of 1-alkenes (alpha-olefins). Two broad classes of Ziegler–Natta catalysts are employed, distinguished by their solubility:

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge.

<span class="mw-page-title-main">Zirconium dioxide</span> Chemical compound

Zirconium dioxide is a white crystalline oxide of zirconium. Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant stabilized cubic structured zirconia, cubic zirconia, is synthesized in various colours for use as a gemstone and a diamond simulant.

<span class="mw-page-title-main">Group 4 element</span> Group of chemical elements

Group 4 is the second group of transition metals in the periodic table. It contains the four elements titanium (Ti), zirconium (Zr), hafnium (Hf), and rutherfordium (Rf). The group is also called the titanium group or titanium family after its lightest member.

<span class="mw-page-title-main">Endohedral fullerene</span> Fullerene molecule with additional atoms, ions, or clusters enclosed within itself

Endohedral fullerenes, also called endofullerenes, are fullerenes that have additional atoms, ions, or clusters enclosed within their inner spheres. The first lanthanum C60 complex called La@C60 was synthesized in 1985. The @ (at sign) in the name reflects the notion of a small molecule trapped inside a shell. Two types of endohedral complexes exist: endohedral metallofullerenes and non-metal doped fullerenes.

<span class="mw-page-title-main">Tetrahedral molecular geometry</span> Central atom with four substituents located at the corners of a tetrahedron

In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are cos−1(−13) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane as well as its heavier analogues. Methane and other perfectly symmetrical tetrahedral molecules belong to point group Td, but most tetrahedral molecules have lower symmetry. Tetrahedral molecules can be chiral.

<span class="mw-page-title-main">Zirconium(IV) chloride</span> Chemical compound

Zirconium(IV) chloride, also known as zirconium tetrachloride, is an inorganic compound frequently used as a precursor to other compounds of zirconium. This white high-melting solid hydrolyzes rapidly in humid air.

Titanium(III) chloride is the inorganic compound with the formula TiCl3. At least four distinct species have this formula; additionally hydrated derivatives are known. TiCl3 is one of the most common halides of titanium and is an important catalyst for the manufacture of polyolefins.

<span class="mw-page-title-main">Borohydride</span>

Borohydride refers to the anion [BH4], which is also called tetrahydridoborate, and its salts. Borohydride or hydroborate is also the term used for compounds containing [BH4−nXn], where n is an integer from 0 to 3, for example cyanoborohydride or cyanotrihydroborate [BH3(CN)] and triethylborohydride or triethylhydroborate [BH(CH2CH3)3]. Borohydrides find wide use as reducing agents in organic synthesis. The most important borohydrides are lithium borohydride and sodium borohydride, but other salts are well known. Tetrahydroborates are also of academic and industrial interest in inorganic chemistry.

In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion/molecule/atom is called a ligand. This number is determined somewhat differently for molecules than for crystals.

<span class="mw-page-title-main">Organozirconium and organohafnium chemistry</span>

Organozirconium chemistry is the science of exploring the properties, structure, and reactivity of organozirconium compounds, which are organometallic compounds containing chemical bonds between carbon and zirconium. Organozirconium compounds have been widely studied, in part because they are useful catalysts in Ziegler-Natta polymerization.

<span class="mw-page-title-main">Titanium ethoxide</span> Chemical compound

Titanium ethoxide is a chemical compound with the formula Ti4(OCH2CH3)16. It is a commercially available colorless liquid that is soluble in organic solvents but hydrolyzes readily. Its structure is more complex than suggested by its empirical formula. Like other alkoxides of titanium(IV) and zirconium(IV), it finds used in organic synthesis and materials science.

<span class="mw-page-title-main">Nanocluster</span> Collection of bound atoms or molecules ≤3 nm in diameter

Nanoclusters are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semiconductor and metallic nanocrystals. The majority of research conducted to study nanoclusters has focused on characterizing their crystal structures and understanding their role in the nucleation and growth mechanisms of larger materials. These nanoclusters can be composed either of a single or of multiple elements, and exhibit interesting electronic, optical, and chemical properties compared to their larger counterparts.

Nickel compounds are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.

Intrinsic bond orbitals (IBO) are localized molecular orbitals giving exact and non-empirical representations of wave functions. They are obtained by unitary transformation and form an orthogonal set of orbitals localized on a minimal number of atoms. IBOs present an intuitive and unbiased interpretation of chemical bonding with naturally arising Lewis structures. For this reason IBOs have been successfully employed for the elucidation of molecular structures and electron flow along the intrinsic reaction coordinate (IRC). IBOs have also found application as Wannier functions in the study of solids.

Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.

<span class="mw-page-title-main">Zirconium(III) bromide</span> Chemical compound

Zirconium(III) bromide is an inorganic compound with the formula ZrBr3.

<span class="mw-page-title-main">Zirconium(III) iodide</span> Chemical compound

Zirconium(III) iodide is an inorganic compound with the formula ZrI3.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Rohmer, Marie-Madeleine; Bénard, Marc; Poblet, Josep-M. (2000). "Structure, Reactivity, and Growth Pathways of Metallocarbohedrenes M
    8
    C
    12
    and Transition Metal/Carbon Clusters and Nanocrystals: A Challenge to Computational Chemistry". Chemical Reviews. 100 (2): 495–542. doi:10.1021/cr9803885. PMID   11749244.
  2. 1 2 3 Martínez, J.I.; Castro, A.; Rubio, A.; Poblet, J.M.; Alonso, J.A. (2004). "Calculation of the optical spectrum of the Ti
    8
    C
    12
    and V
    8
    C12
    Met-Cars". Chemical Physics Letters. 398 (4–6): 292. doi:10.1016/j.cplett.2004.09.058. hdl:10261/98132.
  3. 1 2 3 4 5 Guo, B. C.; Kerns, K. P.; Castleman, A. W. (1992). "Ti
    8
    C+
    12
    -Metallo-Carbohedrenes: A New Class of Molecular Clusters?". Science. 255 (5050): 1411–3. doi:10.1126/science.255.5050.1411. PMID   17801229. S2CID   42112003.
  4. 1 2 Guo, B. C.; Wei, S.; Purnell, J.; Buzza, S.; Castleman, A. W. (1992). "Metallo-Carbohedrenes [M
    8
    C+
    12
    (M = V, Zr, Hf, and Ti)]: A Class of Stable Molecular Cluster Ions". Science. 256 (5056): 515–6. doi:10.1126/science.256.5056.515. PMID   17787948. S2CID   34038508.
  5. 1 2 Rohmer, Marie-Madeleine; Benard, Marc; Bo, Carles; Poblet, Josep-M. (1995). "Ab Initio SCF and CI Investigations on Titanium-Carbon Clusters: Metallocarbohedrenes Ti
    8
    C
    12
    and Cfc Crystallites Ti14C13". Journal of the American Chemical Society. 117: 508–517. doi:10.1021/ja00106a059.
  6. Pauling, L (1992). "Molecular structure of Ti
    8
    C
    12
    and related complexes"
    . Proceedings of the National Academy of Sciences of the United States of America. 89 (17): 8175–8176. doi: 10.1073/pnas.89.17.8175 . PMC   49879 . PMID   11607323.
  7. Methfessel, M; Van Schilfgaarde, M; Scheffler, M (1993). "Electronic structure and bonding in the metallocarbohedrene Ti
    8
    C
    12
    "
    (PDF). Physical Review Letters. 70 (1): 29–32. doi:10.1103/PhysRevLett.70.29. PMID   10053250.
  8. Li, Zhi-Qiang; Gu, Bing-lin; Han, Ru-Shan; Zheng, Qing-qi (1993). "Structure and electronic properties of Ti
    8
    C
    12
    cluster". Zeitschrift für Physik D. 27 (3): 275. doi:10.1007/BF01436544. S2CID   124199334.
  9. Xia, H B; Tian, D C; Jin, Z Z; Wang, L L (1994). "First-principles calculation of the electronic structure of Ti
    8
    C
    12
    and Zr
    8
    C
    12
    ". Journal of Physics: Condensed Matter. 6 (23): 4269. doi:10.1088/0953-8984/6/23/006.
  10. 1 2 Hou, Hua; Muckerman, James T.; Liu, Ping; Rodriguez, José A. (2003). "Computational Study of the Geometry and Properties of the Metcars Ti
    8
    C
    12
    and Mo
    8
    C
    12
    ". The Journal of Physical Chemistry A. 107 (44): 9344. doi:10.1021/jp0357976.
  11. J. S. Pilgrim, M. A. Duncan (1993). "Metallo-carbohedrenes: chromium, iron, and molybdenum analogs". Journal of the American Chemical Society. 115 (15): 6958–696. doi:10.1021/ja00068a065.
  12. Sakurai, H.; Castleman, A. W. (1998). "Ionization Potentials for the Titanium, Zirconium, and the Mixed Metal Met-Cars". The Journal of Physical Chemistry A. 102 (51): 10486. Bibcode:1998JPCA..10210486S. doi:10.1021/jp983287j.
  13. Van Heijnsbergen, Deniz; von Helden, Gert; Duncan, Michael A.; Van Roij, André J. A.; Meijer, Gerard (1999). "Vibrational Spectroscopy of Gas-Phase Metal-Carbide Clusters and Nanocrystals" (PDF). Physical Review Letters. 83 (24): 4983. Bibcode:1999PhRvL..83.4983V. doi:10.1103/PhysRevLett.83.4983. hdl: 2066/98975 .
  14. Van Heijnsbergen, Deniz; Duncan, Michael A; Meijer, Gerard; von Helden, Gert (2001). "Infrared spectroscopy of Ti
    8
    C
    12
    'met-car' cations". Chemical Physics Letters. 349 (3–4): 220. doi:10.1016/S0009-2614(01)01230-1.
    .
  15. Liu, Ping; Rodriguez, José A.; Muckerman, James T. (2004). "The Ti
    8
    C
    12
    Metcar: A New Model Catalyst for Hydrodesulfurization". The Journal of Physical Chemistry B. 108 (49): 18796. doi:10.1021/jp045460j.