NOS1AP

Last updated
NOS1AP
Identifiers
Aliases NOS1AP , 6330408P19Rik, CAPON, nitric oxide synthase 1 adaptor protein, NPHS22
External IDs OMIM: 605551 HomoloGene: 136252 GeneCards: NOS1AP
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_014697
NM_001126060
NM_001164757

n/a

RefSeq (protein)

NP_001119532
NP_001158229
NP_055512

n/a

Location (UCSC) Chr 1: 162.07 – 162.37 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Nitric oxide synthase 1 adaptor protein (NOS1AP) also known as carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein (CAPON) is a protein that in humans is encoded by the NOS1AP gene. [3] [4] [5]

Contents

This gene encodes a cytosolic protein that binds to the signaling molecule, neuronal nitric oxide synthase (nNOS). This protein has a C-terminal PDZ-binding domain that mediates interactions with nNOS and an N-terminal phosphotyrosine binding (PTB) domain that binds to the small monomeric G protein, Dexras1. Studies of the related mouse and rat proteins have shown that this protein functions as an adapter protein linking nNOS to specific targets, such as Dexras1 and the synapsins. [5] NOS1AP polymorphisms has been associated with the QT interval length. [6]

Interactions

NOS1AP has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Nitric oxide synthase</span> Enzyme catalysing the formation of the gasotransmitter NO(nitric oxide)

Nitric oxide synthases (NOSs) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. NO is an important cellular signaling molecule. It helps modulate vascular tone, insulin secretion, airway tone, and peristalsis, and is involved in angiogenesis and neural development. It may function as a retrograde neurotransmitter. Nitric oxide is mediated in mammals by the calcium-calmodulin controlled isoenzymes eNOS and nNOS. The inducible isoform, iNOS, involved in immune response, binds calmodulin at physiologically relevant concentrations, and produces NO as an immune defense mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease.

<span class="mw-page-title-main">Signal transducing adaptor protein</span> Type of protein

Signal transducing adaptor proteins (STAPs) are proteins that are accessory to main proteins in a signal transduction pathway. Adaptor proteins contain a variety of protein-binding modules that link protein-binding partners together and facilitate the creation of larger signaling complexes. These proteins tend to lack any intrinsic enzymatic activity themselves, instead mediating specific protein–protein interactions that drive the formation of protein complexes. Examples of adaptor proteins include MYD88, Grb2 and SHC1.

<span class="mw-page-title-main">Low-density lipoprotein receptor gene family</span>

The low-density lipoprotein receptor gene family codes for a class of structurally related cell surface receptors that fulfill diverse biological functions in different organs, tissues, and cell types. The role that is most commonly associated with this evolutionarily ancient family is cholesterol homeostasis. In humans, excess cholesterol in the blood is captured by low-density lipoprotein (LDL) and removed by the liver via endocytosis of the LDL receptor. Recent evidence indicates that the members of the LDL receptor gene family are active in the cell signalling pathways between specialized cells in many, if not all, multicellular organisms.

<span class="mw-page-title-main">DLG4</span> Mammalian protein found in Homo sapiens

PSD-95 also known as SAP-90 is a protein that in humans is encoded by the DLG4 gene.

<span class="mw-page-title-main">MAPK8IP1</span> Protein-coding gene in the species Homo sapiens

C-jun-amino-terminal kinase-interacting protein 1 is an enzyme that in humans is encoded by the MAPK8IP1 gene.

<span class="mw-page-title-main">NOS1</span> Protein-coding gene in the species Homo sapiens

Nitric oxide synthase 1 (neuronal), also known as NOS1, is an enzyme that in humans is encoded by the NOS1 gene.

<span class="mw-page-title-main">DLG2</span> Protein-coding gene in the species Homo sapiens

Disks large homolog 2 (DLG2) also known as channel-associated protein of synapse-110 (chapsyn-110) or postsynaptic density protein 93 (PSD-93) is a protein that in humans is encoded by the DLG2 gene.

<span class="mw-page-title-main">APBB1</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family B member 1 is a protein that in humans is encoded by the APBB1 gene.

<span class="mw-page-title-main">DYNLL1</span> Protein-coding gene in humans

Dynein light chain 1, cytoplasmic is a protein that in humans is encoded by the DYNLL1 gene.

<span class="mw-page-title-main">GIPC1</span> Protein-coding gene in the species Homo sapiens

GIPC PDZ domain containing family, member 1 (GIPC1) is a protein that in humans is encoded by the GIPC1 gene. GIPC was originally identified as it binds specifically to the C terminus of RGS-GAIP, a protein involved in the regulation of G protein signaling. GIPC is an acronym for "GAIP Interacting Protein C-terminus". RGS proteins are "Regulators of G protein Signaling" and RGS-GAIP is a "GTPase Activator protein for Gαi/Gαq", which are two major subtypes of Gα proteins. The human GIPC1 molecule is 333 amino acids or about 36 kDa in molecular size and consists of a central PDZ domain, a compact protein module which mediates specific protein-protein interactions. The RGS-GAIP protein interacts with this domain and many other proteins interact here or at other parts of the GIPC1 molecule. As a result, GIPC1 was independently discovered by several other groups and has a variety of alternate names, including synectin, C19orf3, RGS19IP1 and others. The GIPC1 gene family in mammals consisting of three members, so the first discovered, originally named GIPC, is now generally called GIPC1, with the other two being named GIPC2 and GIPC3. The three human proteins are about 60% identical in protein sequence. GIPC1 has been shown to interact with a variety of other receptor and cytoskeletal proteins including the GLUT1 receptor, ACTN1, KIF1B, MYO6, PLEKHG5, SDC4/syndecan-4, SEMA4C/semaphorin-4 and HTLV-I Tax. The general function of GIPC family proteins therefore appears to be mediating specific interactions between proteins involved in G protein signaling and membrane translocation.

<span class="mw-page-title-main">CAMK1</span> Protein-coding gene in the species Homo sapiens

Calcium/calmodulin-dependent protein kinase type 1 is an enzyme that in humans is encoded by the CAMK1 gene.

<span class="mw-page-title-main">APBA2</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family A member 2 is a protein that in humans is encoded by the APBA2 gene.

<span class="mw-page-title-main">ITGB1BP1</span> Protein-coding gene in the species Homo sapiens

Integrin beta-1-binding protein 1 is a protein that in humans is encoded by the ITGB1BP1 gene.

<span class="mw-page-title-main">MAPK8IP2</span> Protein-coding gene in the species Homo sapiens

C-jun-amino-terminal kinase-interacting protein 2 is a protein or the name of the gene that encodes it. The gene is also known as Islet-Brain-2 (IB2).

<span class="mw-page-title-main">SYN3</span> Protein-coding gene in the species Homo sapiens

Synapsin-3 is a protein that in humans is encoded by the SYN3 gene.

<span class="mw-page-title-main">GUCY1B3</span> Protein-coding gene in the species Homo sapiens

Guanylate cyclase soluble subunit beta-1 is an enzyme that in humans is encoded by the GUCY1B3 gene.

<span class="mw-page-title-main">ANAPC10</span> Protein-coding gene in the species Homo sapiens

Anaphase-promoting complex subunit 10 is an enzyme that in humans is encoded by the ANAPC10 gene.

<span class="mw-page-title-main">SYNJ2BP</span> Protein-coding gene in the species Homo sapiens

Synaptojanin-2-binding protein is a protein that in humans is encoded by the SYNJ2BP gene.

<span class="mw-page-title-main">Synapsin I</span> Protein-coding gene in the species Homo sapiens

Synapsin I, is the collective name for Synapsin Ia and Synapsin Ib, two nearly identical phosphoproteins that in humans are encoded by the SYN1 gene. In its phosphorylated form, Synapsin I may also be referred to as phosphosynaspin I. Synapsin I is the first of the proteins in the synapsin family of phosphoproteins in the synaptic vesicles present in the central and peripheral nervous systems. Synapsin Ia and Ib are close in length and almost the same in make up, however, Synapsin Ib stops short of the last segment of the C-terminal in the amino acid sequence found in Synapsin Ia.

<span class="mw-page-title-main">Synapsin 2</span> Protein-coding gene in the species Homo sapiens

Synapsin II is the collective name for synapsin IIa and synapsin IIb, two nearly identical phosphoproteins in the synapsin family that in humans are encoded by the SYN2 gene. Synapsins associate as endogenous substrates to the surface of synaptic vesicles and act as key modulators in neurotransmitter release across the presynaptic membrane of axonal neurons in the nervous system.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000198929 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Seki N, Ohira M, Nagase T, Ishikawa K, Miyajima N, Nakajima D, Nomura N, Ohara O (February 1998). "Characterization of cDNA clones in size-fractionated cDNA libraries from human brain". DNA Res. 4 (5): 345–9. doi: 10.1093/dnares/4.5.345 . PMID   9455484. S2CID   263410587.
  4. 1 2 Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH (Mar 1998). "CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95". Neuron. 20 (1): 115–24. doi: 10.1016/S0896-6273(00)80439-0 . PMID   9459447. S2CID   14613261.
  5. 1 2 "Entrez Gene: NOS1AP nitric oxide synthase 1 (neuronal) adaptor protein".
  6. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M, West K, Kashuk C, Akyol M, Perz S, Jalilzadeh S, Illig T, Gieger C, Guo CY, Larson MG, Wichmann HE, Marbán E, O'Donnell CJ, Hirschhorn JN, Kääb S, Spooner PM, Meitinger T, Chakravarti A (2006). "A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization". Nat. Genet. 38 (6): 644–51. doi:10.1038/ng1790. PMID   16648850. S2CID   12942685.
  7. 1 2 Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J, Richardson JA, Stockinger W, Nimpf J, Herz J (August 2000). "Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction". J. Biol. Chem. 275 (33): 25616–24. doi: 10.1074/jbc.M000955200 . PMID   10827173.
  8. Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH (October 2000). "Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON". Neuron. 28 (1): 183–93. doi: 10.1016/S0896-6273(00)00095-7 . PMID   11086993. S2CID   10533464.
  9. Jaffrey SR, Benfenati F, Snowman AM, Czernik AJ, Snyder SH (March 2002). "Neuronal nitric-oxide synthase localization mediated by a ternary complex with synapsin and CAPON". Proc. Natl. Acad. Sci. U.S.A. 99 (5): 3199–204. Bibcode:2002PNAS...99.3199J. doi: 10.1073/pnas.261705799 . PMC   122496 . PMID   11867766.

Further reading