Neutron poison

Last updated

In applications such as nuclear reactors, a neutron poison (also called a neutron absorber or a nuclear poison) is a substance with a large neutron absorption cross-section. [1] In such applications, absorbing neutrons is normally an undesirable effect. However, neutron-absorbing materials, also called poisons, are intentionally inserted into some types of reactors in order to lower the high reactivity of their initial fresh fuel load. Some of these poisons deplete as they absorb neutrons during reactor operation while others remain relatively constant.

Contents

The capture of neutrons by short half-life fission products is known as reactor poisoning; neutron capture by long-lived or stable fission products is called reactor slagging. [2]

Transient fission product poisons

Some of the fission products generated during nuclear reactions have a high neutron absorption capacity, such as xenon-135 (microscopic cross-section σ = 2,000,000  barns (b); up to 3 million barns in reactor conditions) [3] and samarium-149 = 74,500 b). Because these two, fission-product poisons remove neutrons from the reactor, they will affect the thermal utilization factor and, thus, the reactivity. The poisoning of a reactor core by these fission products may become so serious that the chain reaction comes to a standstill.

Xenon-135 in particular tremendously affects the operation of a nuclear reactor because it is the most powerful, known, neutron poison. The inability of a reactor to be restarted due to the buildup of xenon-135 (reaches a maximum after about 10 hours) is sometimes referred to as xenon-precluded start-up. The period of time in which the reactor is unable to override the effects of xenon-135 is called the xenon dead time or poison outage. During periods of steady state operation, at a constant neutron flux level, the xenon-135 concentration builds up to its equilibrium value for that reactor power in about 40 to 50 hours. When the reactor power is increased, xenon-135 concentration initially decreases because the burn up is increased at the new, higher power level. Thus, the dynamics of xenon poisoning are important for the stability of the flux pattern and geometrical power distribution, especially in physically large reactors.

Because 95% of the xenon-135 production is from iodine-135 decay, which has a 6- to 7-hour half-life, the production of xenon-135 remains constant; at this point, the xenon-135 concentration reaches a minimum. The concentration then increases to the equilibrium for the new power level in the same time, roughly 40 to 50 hours. The magnitude and the rate of change of concentration during the initial 4 to 6 hour period following the power change is dependent upon the initial power level and on the amount of change in power level; the xenon-135 concentration change is greater for a larger change in power level. When reactor power is decreased, the process is reversed. [4]

Because samarium-149 is not radioactive and is not removed by decay, it presents problems somewhat different from those encountered with xenon-135. The equilibrium concentration (and thus the poisoning effect) builds to an equilibrium value during reactor operation in about 500 hours (about three weeks), and since samarium-149 is stable, the concentration remains essentially constant during reactor operation. [5] Another problematic isotope that builds up is gadolinium-157, with microscopic cross-section of σ = 200,000 b.

Accumulating fission product poisons

There are numerous other fission products that, as a result of their concentration and thermal neutron absorption cross section, have a poisoning effect on reactor operation. Individually, they are of little consequence, but taken together they have a significant effect. These are often characterized as lumped fission product poisons and accumulate at an average rate of 50 barns per fission event in the reactor. The buildup of fission product poisons in the fuel eventually leads to loss of efficiency, and in some cases to instability. In practice, buildup of reactor poisons in nuclear fuel is what determines the lifetime of nuclear fuel in a reactor: long before all possible fissions have taken place, buildup of long-lived neutron-absorbing fission products damps out the chain reaction. This is the reason that nuclear reprocessing is a useful activity: solid spent nuclear fuel contains about 97% of the original fissionable material present in newly manufactured nuclear fuel. Chemical separation of the fission products restores the fuel so that it can be used again.

Other potential approaches to fission product removal include solid but porous fuel which allows escape of fission products [6] and liquid or gaseous fuel (molten salt reactor, aqueous homogeneous reactor). These ease the problem of fission product accumulation in the fuel, but pose the additional problem of safely removing and storing the fission products. Some fission products are themselves stable or quickly decay to stable nuclides. Of the (roughly half a dozen each) medium lived and long-lived fission products, some, like 99
Tc
, are proposed for nuclear transmutation precisely because of their non-negligible capture cross section.

Other fission products with relatively high absorption cross sections include 83Kr, 95Mo, 143Nd, 147Pm. [7] Above this mass, even many even-mass number isotopes have large absorption cross sections, allowing one nucleus to serially absorb multiple neutrons. Fission of heavier actinides produces more of the heavier fission products in the lanthanide range, so the total neutron absorption cross section of fission products is higher. [8]

In a fast reactor the fission product poison situation may differ significantly because neutron absorption cross sections can differ for thermal neutrons and fast neutrons. In the RBEC-M Lead-Bismuth Cooled Fast Reactor, the fission products with neutron capture more than 5% of total fission products capture are, in order, 133Cs, 101Ru, 103Rh, 99Tc, 105Pd and 107Pd in the core, with 149Sm replacing 107Pd for 6th place in the breeding blanket. [9]

Decay poisons

In addition to fission product poisons, other materials in the reactor decay to materials that act as neutron poisons. An example of this is the decay of Tritium to Helium-3. Since Tritium has a half-life of 12.3 years, normally this decay does not significantly affect reactor operations because the rate of decay of Tritium is so slow. However, if Tritium is produced in a reactor and then allowed to remain in the reactor during a prolonged shutdown of several months, a sufficient amount of tritium may decay to helium-3 to add a significant amount of negative reactivity. Any Helium-3 produced in the reactor during a shutdown period will be removed during subsequent operation by a neutron-proton reaction.[ clarification needed ] Pressurized Heavy Water Reactors will produce small but notable amounts of Tritium through neutron capture in the heavy water moderator, which will likewise decay to Helium-3. Given the high market value of both Tritium and Helium-3, Tritium is periodically removed from the moderator/coolant of some CANDU reactors and sold at a profit. [10] Water boration (the addition of boric acid to the moderator/coolant) which is commonly employed in pressurized light water reactors also produces non-negligible amounts of Tritium via the successive reactions 10
5
B
(n, α) 7
3
Li
and 7
3
Li
(n,α n) 3
1
T
or (in the presence of fast neutrons) 7
3
Li
(n,2n)6
3
Li
and subsequently 6
3
Li
(n,α)3
1
T
. Fast neutrons also produce Tritium directly from boron via 10
5
B
(n,2α)3
1
T
. [11] All nuclear fission reactors produce a certain quantity of Tritium via ternary fission. [12]

Control poisons

During operation of a reactor the amount of fuel contained in the core decreases monotonically. If the reactor is to operate for a long period of time, fuel in excess of that needed for exact criticality must be added when the reactor is fueled. The positive reactivity due to the excess fuel must be balanced with negative reactivity from neutron-absorbing material. Movable control rods containing neutron-absorbing material is one method, but control rods alone to balance the excess reactivity may be impractical for a particular core design as there may be insufficient room for the rods or their mechanisms, namely in submarines, where space is particularly at a premium.

Burnable poisons

To control large amounts of excess fuel reactivity without control rods, burnable poisons are loaded into the core. Burnable poisons are materials that have a high neutron absorption cross section that are converted into materials of relatively low absorption cross section as the result of neutron absorption. Due to the burn-up of the poison material, the negative reactivity of the burnable poison decreases over core life. Ideally, these poisons should decrease their negative reactivity at the same rate that the fuel's excess positive reactivity is depleted.

Fixed burnable poisons are generally used in the form of compounds of boron [13] or gadolinium that are shaped into separate lattice pins or plates, or introduced as additives to the fuel. Since they can usually be distributed more uniformly than control rods, these poisons are less disruptive to the core's power distribution. Fixed burnable poisons may also be discretely loaded in specific locations in the core in order to shape or control flux profiles to prevent excessive flux and power peaking near certain regions of the reactor. Current practice however is to use fixed non-burnable poisons in this service. [14]

Non-burnable poison

A non-burnable poison is one that maintains a constant negative reactivity worth over the life of the core. While no neutron poison is strictly non-burnable, certain materials can be treated as non-burnable poisons under certain conditions. One example is hafnium. It has five stable isotopes, 176
Hf
through 180
Hf
, which can all absorb neutrons, so the first four are chemically unchanged by absorbing neutrons. (A final absorption produces 181
Hf
, which beta-decays to 181
Ta
.) This absorption chain results in a long-lived burnable poison which approximates non-burnable characteristics. [15]

Soluble poisons

Soluble poisons, also called chemical shim, produce a spatially uniform neutron absorption when dissolved in the water coolant. The most common soluble poison in commercial pressurized water reactors (PWR) is boric acid, which is often referred to as soluble boron. The boric acid in the coolant decreases the thermal utilization factor, causing a decrease in reactivity. By varying the concentration of boric acid in the coolant, a process referred to as boration and dilution, the reactivity of the core can be easily varied. If the boron concentration is increased (boration), the coolant/moderator absorbs more neutrons, adding negative reactivity. If the boron concentration is reduced (dilution), positive reactivity is added. The changing of boron concentration in a PWR is a slow process and is used primarily to compensate for fuel burnout or poison buildup.

The variation in boron concentration allows control rod use to be minimized, which results in a flatter flux profile over the core than can be produced by rod insertion. The flatter flux profile occurs because there are no regions of depressed flux like those that would be produced in the vicinity of inserted control rods. This system is not in widespread use because the chemicals make the moderator temperature reactivity coefficient less negative. [14] All commercial PWR types operating in the US (Westinghouse, Combustion Engineering, and Babcock & Wilcox) employ soluble boron to control excess reactivity. US Navy reactors and Boiling Water Reactors do not.[ citation needed ] One known issue of boric acid is that it increases corrosion risks, as illustrated in a 2002 incident at Davis-Besse Nuclear Power Station. [16]

Soluble poisons are also used in emergency shutdown systems. During SCRAM the operators can inject solutions containing neutron poisons directly into the reactor coolant. Various aqueous solutions, including borax and gadolinium nitrate (Gd(NO3)3·xH2O), are used. [14]

Related Research Articles

<span class="mw-page-title-main">Nuclear reactor</span> Device used to initiate and control a nuclear chain reaction

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.

<span class="mw-page-title-main">Neutron moderator</span> Substance that slows down particles with no electric charge

In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of uranium-235 or other fissile isotope by colliding with their atomic nucleus.

<span class="mw-page-title-main">Scram</span> Emergency shutdown of a nuclear reactor

A scram or SCRAM is an emergency shutdown of a nuclear reactor effected by immediately terminating the fission reaction. It is also the name that is given to the manually operated kill switch that initiates the shutdown. In commercial reactor operations, this type of shutdown is often referred to as a "scram" at boiling water reactors (BWR), a "reactor trip" at pressurized water reactors and at a CANDU reactor. In many cases, a scram is part of the routine shutdown procedure, which serves to test the emergency shutdown system.

<span class="mw-page-title-main">Control rod</span> Device used to regulate the power of a nuclear reactor

Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium. Their compositions include chemical elements such as boron, cadmium, silver, hafnium, or indium, that are capable of absorbing many neutrons without themselves decaying. These elements have different neutron capture cross sections for neutrons of various energies. Boiling water reactors (BWR), pressurized water reactors (PWR), and heavy-water reactors (HWR) operate with thermal neutrons, while breeder reactors operate with fast neutrons. Each reactor design can use different control rod materials based on the energy spectrum of its neutrons. Control rods have been used in nuclear aircraft engines like Project Pluto as a method of control.

<span class="mw-page-title-main">Nuclear fission product</span> Atoms or particles produced by nuclear fission

Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release of heat energy, and gamma rays. The two smaller nuclei are the fission products..

<span class="mw-page-title-main">Fast-neutron reactor</span> Nuclear reactor where fast neutrons maintain a fission chain reaction

A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest of this was the Superphénix Sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been intensely studied since the 1950s, as they provide certain decisive advantages over the existing fleet of water cooled and water moderated reactors. These are:

In nuclear engineering, the void coefficient is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids form in the reactor moderator or coolant. Net reactivity in a reactor is the sum total of multiple contributions, of which the void coefficient is but one. Reactors in which either the moderator or the coolant is a liquid typically will have a void coefficient value that is either negative or positive. Reactors in which neither the moderator nor the coolant is a liquid will have a void coefficient value equal to zero. It is unclear how the definition of "void" coefficient applies to reactors in which the moderator/coolant is neither liquid nor gas.

<span class="mw-page-title-main">Neutron capture</span> Atomic nuclear process

Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, which are repelled electrostatically.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission.

Naturally occurring xenon (54Xe) consists of seven stable isotopes and two very long-lived isotopes. Double electron capture has been observed in 124Xe and double beta decay in 136Xe, which are among the longest measured half-lives of all nuclides. The isotopes 126Xe and 134Xe are also predicted to undergo double beta decay, but this has never been observed in these isotopes, so they are considered to be stable. Beyond these stable forms, 32 artificial unstable isotopes and various isomers have been studied, the longest-lived of which is 127Xe with a half-life of 36.345 days. All other isotopes have half-lives less than 12 days, most less than 20 hours. The shortest-lived isotope, 108Xe, has a half-life of 58 μs, and is the heaviest known nuclide with equal numbers of protons and neutrons. Of known isomers, the longest-lived is 131mXe with a half-life of 11.934 days. 129Xe is produced by beta decay of 129I ; 131mXe, 133Xe, 133mXe, and 135Xe are some of the fission products of both 235U and 239Pu, so are used as indicators of nuclear explosions.

<span class="mw-page-title-main">Nuclear reactor physics</span> Field of physics dealing with nuclear reactors

Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons. A reactor consists of an assembly of nuclear fuel, usually surrounded by a neutron moderator such as regular water, heavy water, graphite, or zirconium hydride, and fitted with mechanisms such as control rods which control the rate of the reaction.

The Clean and Environmentally Safe Advanced Reactor (CAESAR) is a nuclear reactor concept created by Claudio Filippone, the Director of the Center for Advanced Energy Concepts at the University of Maryland, College Park and head of the ongoing CAESAR Project. The concept's key element is the use of steam as a moderator, making it a type of reduced moderation water reactor. Because the density of steam may be controlled very precisely, Filippone claims it can be used to fine-tune neutron fluxes to ensure that neutrons are moving with an optimal energy profile to split 238
92
U
nuclei – in other words, cause fission.

<span class="mw-page-title-main">Fission products (by element)</span> Breakdown of nuclear fission results

This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium. The isotopes are listed by element, in order by atomic number.

<span class="mw-page-title-main">Molten-Salt Reactor Experiment</span> Nuclear reactor, Oak Ridge 1965–1969

The Molten-Salt Reactor Experiment (MSRE) was an experimental molten salt reactor research reactor at the Oak Ridge National Laboratory (ORNL). This technology was researched through the 1960s, the reactor was constructed by 1964, it went critical in 1965, and was operated until 1969. The costs of a cleanup project were estimated at about $130 million.

Xenon-135 (135Xe) is an unstable isotope of xenon with a half-life of about 9.2 hours. 135Xe is a fission product of uranium and it is the most powerful known neutron-absorbing nuclear poison, with a significant effect on nuclear reactor operation. The ultimate yield of xenon-135 from fission is 6.3%, though most of this is from fission-produced tellurium-135 and iodine-135.

An activation product is a material that has been made radioactive by the process of neutron activation.

<span class="mw-page-title-main">Liquid fluoride thorium reactor</span> Type of nuclear reactor that uses molten material as fuel

The liquid fluoride thorium reactor is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based molten (liquid) salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.

A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary coolant loop takes on short-term radioactivity from the reactor.

The iodine pit, also called the iodine hole or xenon pit, is a temporary disabling of a nuclear reactor due to buildup of short-lived nuclear poisons in the reactor core. The main isotope responsible is 135Xe, mainly produced by natural decay of 135I. 135I is a weak neutron absorber, while 135Xe is the strongest known neutron absorber. When 135Xe builds up in the fuel rods of a reactor, it significantly lowers their reactivity, by absorbing a significant amount of the neutrons that provide the nuclear reaction.

References

  1. "Nuclear poison (or neutron poison)". Glossary. United States Nuclear Regulatory Commission. 7 May 2014. Archived from the original on 14 July 2014. Retrieved 4 July 2014.
  2. Kruglov, Arkadii (2002). The History of the Soviet Atomic Industry. Trans. by Andrei Lokhov. London: Taylor & Francis. p. 57. ISBN   0-415-26970-9. OCLC   50952983 . Retrieved 4 July 2014.
  3. ""Xenon Poisoning" or Neutron Absorption in Reactors". hyperphysics.phy-astr.gsu.edu. Archived from the original on 3 April 2018. Retrieved 12 April 2018.
  4. DOE Handbook, pp. 35–42.
  5. DOE Handbook, pp. 43–47.
  6. Liviu Popa-Simil (2007). "The advantages of the poisons free fuels". Space Nuclear Conference 2007. Archived from the original on 2 March 2008. Retrieved 27 September 2007.
  7. Table B-3: Thermal neutron capture cross sections and resonance integrals – Fission product nuclear data Archived 2011-07-06 at the Wayback Machine
  8. "Evolution of Fission Product Cross Sections". Archived from the original on 2 January 2009. Retrieved 12 April 2023.
  9. A. A. Dudnikov, A. A. Sedov. "RBEC-M Lead-Bismuth Cooled Fast Reactor Benchmarking Calculations" (PDF). International Atomic Energy Agency.[ permanent dead link ]
  10. Pearson, Richard J.; Antoniazzi, Armando B.; Nuttall, William J. (1 November 2018). "Tritium supply and use: a key issue for the development of nuclear fusion energy". Fusion Engineering and Design. 136: 1140–1148. doi: 10.1016/j.fusengdes.2018.04.090 . S2CID   53560490.
  11. Boron use in PWRs and FHRs Archived 4 February 2022 at the Wayback Machine
  12. "Ternary Fission | nuclear-power.com". Nuclear Power. Archived from the original on 7 March 2022. Retrieved 7 March 2022.
  13. Fabrication and Evaluation of Urania-Alumina Fuel Elements and Boron Carbide Burnable Poison Elements Archived 11 March 2023 at the Wayback Machine , Wisnyi, L. G. and Taylor, K.M., in "ASTM Special Technical Publication No. 276: Materials in Nuclear Applications", Committee E-10 Staff, American Society for Testing Materials, 1959
  14. 1 2 3 DOE Handbook, p. 31.
  15. DOE Handbook, p. 32.
  16. United States Government Accountability Office (2006). "Report to Congress" (PDF). p. 1.

Bibliography