Octahedral prism

Last updated
Octahedral prism
Octahedral prism.png Octahedral prism-ortho.png
Schlegel diagram and skew orthogonal projection
Type Prismatic uniform 4-polytope
Uniform index51
Schläfli symbol t{2,3,4} or {3,4}×{}
t1,3{3,3,2} or r{3,3}×{}
s{2,6}×{}
sr{3,2}×{}
Coxeter diagram CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
Cells2 (3.3.3.3) Octahedron.png
8 (3.4.4) Triangular prism.png
Faces16 {3}, 12 {4}
Edges30 (2×12+6)
Vertices12 (2×6)
Vertex figure Tetratetrahedral prism verf.png
Square pyramid
Dual polytope Cubic bipyramid
Symmetry [3,4,2], order 96
[3,3,2], order 48
[6,2+,2], order 24
[(3,2)+,2], order 12
Properties convex, Hanner polytope
Octahedral prism net.png
Net

In geometry, an octahedral prism is a convex uniform 4-polytope. This 4-polytope has 10 polyhedral cells: 2 octahedra connected by 8 triangular prisms.

Contents

Alternative names

Coordinates

It is a Hanner polytope with vertex coordinates, permuting first 3 coordinates:

([±1,0,0]; ±1)

Structure

The octahedral prism consists of two octahedra connected to each other via 8 triangular prisms. The triangular prisms are joined to each other via their square faces.

Projections

Transparent Schlegel diagram Octahedral hyperprism Schlegel.png
Transparent Schlegel diagram

The octahedron-first orthographic projection of the octahedral prism into 3D space has an octahedral envelope. The two octahedral cells project onto the entire volume of this envelope, while the 8 triangular prismic cells project onto its 8 triangular faces.

The triangular-prism-first orthographic projection of the octahedral prism into 3D space has a hexagonal prismic envelope. The two octahedral cells project onto the two hexagonal faces. One triangular prismic cell projects onto a triangular prism at the center of the envelope, surrounded by the images of 3 other triangular prismic cells to cover the entire volume of the envelope. The remaining four triangular prismic cells are projected onto the entire volume of the envelope as well, in the same arrangement, except with opposite orientation.

It is the second in an infinite series of uniform antiprismatic prisms.

Convex p-gonal antiprismatic prisms
Name s{2,2}×{} s{2,3}×{} s{2,4}×{} s{2,5}×{} s{2,6}×{} s{2,7}×{} s{2,8}×{} s{2,p}×{}
Coxeter
diagram
CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 10.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 5.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 12.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 14.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 7.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 16.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node.pngCDel 2x.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2.pngCDel node 1.png
Image Digonal antiprismatic prism.png Triangular antiprismatic prism.png Square antiprismatic prism.png Pentagonal antiprismatic prism.png Hexagonal antiprismatic prism.png Heptagonal antiprismatic prism.png Octagonal antiprismatic prism.png 15-gonal antiprismatic prism.png
Vertex
figure
Tetrahedral prism verf.png Tetratetrahedral prism verf.png Square antiprismatic prism verf2.png Pentagonal antiprismatic prism verf.png Hexagonal antiprismatic prism verf.png Heptagonal antiprismatic prism verf.png Octagonal antiprismatic prism verf.png Uniform antiprismatic prism verf.png
Cells2 s{2,2}
(2) {2}×{}={4}
4 {3}×{}
2 s{2,3}
2 {3}×{}
6 {3}×{}
2 s{2,4}
2 {4}×{}
8 {3}×{}
2 s{2,5}
2 {5}×{}
10 {3}×{}
2 s{2,6}
2 {6}×{}
12 {3}×{}
2 s{2,7}
2 {7}×{}
14 {3}×{}
2 s{2,8}
2 {8}×{}
16 {3}×{}
2 s{2,p}
2 {p}×{}
2p {3}×{}
Net Tetrahedron prism net.png Octahedron prism net.png 4-antiprismatic prism net.png 5-antiprismatic prism net.png 6-antiprismatic prism net.png 7-antiprismatic prism net.png 8-antiprismatic prism net.png 15-gonal antiprismatic prism verf.png

It is one of 18 uniform polyhedral prisms created by using uniform prisms to connect pairs of parallel Platonic solids and Archimedean solids.

It is one of four four-dimensional Hanner polytopes; the other three are the tesseract, the 16-cell, and the dual of the octahedral prism (a cubical bipyramid). [1]

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">4-polytope</span> Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.

<span class="mw-page-title-main">Runcinated 5-cell</span> Four-dimensional geometrical object

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

<span class="mw-page-title-main">Runcinated tesseracts</span>

In four-dimensional geometry, a runcinated tesseract is a convex uniform 4-polytope, being a runcination of the regular tesseract.

<span class="mw-page-title-main">Cantellated tesseract</span>

In four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation of the regular tesseract.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Truncated 24-cells</span>

In geometry, a truncated 24-cell is a uniform 4-polytope formed as the truncation of the regular 24-cell.

In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract.

<span class="mw-page-title-main">Truncated 5-cell</span>

In geometry, a truncated 5-cell is a uniform 4-polytope formed as the truncation of the regular 5-cell.

<span class="mw-page-title-main">Tetrahedral prism</span> Uniform 4-polytope

In geometry, a tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 6 polyhedral cells: 2 tetrahedra connected by 4 triangular prisms. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 vertices.

<span class="mw-page-title-main">Dodecahedral prism</span>

In geometry, a dodecahedral prism is a convex uniform 4-polytope. This 4-polytope has 14 polyhedral cells: 2 dodecahedra connected by 12 pentagonal prisms. It has 54 faces: 30 squares and 24 pentagons. It has 80 edges and 40 vertices.

<span class="mw-page-title-main">Runcinated 24-cells</span>

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

<span class="mw-page-title-main">Cantellated 120-cell</span> 4D geometry item

In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.

<span class="mw-page-title-main">Runcinated 120-cells</span>

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

<span class="mw-page-title-main">Uniform antiprismatic prism</span> 4-D shape

In 4-dimensional geometry, a uniform antiprismatic prism or antiduoprism is a uniform 4-polytope with two uniform antiprism cells in two parallel 3-space hyperplanes, connected by uniform prisms cells between pairs of faces. The symmetry of a p-gonal antiprismatic prism is [2p,2+,2], order 8p.

In 4-dimensional geometry, a truncated octahedral prism or omnitruncated tetrahedral prism is a convex uniform 4-polytope. This 4-polytope has 16 cells It has 64 faces, and 96 edges and 48 vertices.

<span class="mw-page-title-main">Truncated cuboctahedral prism</span>

In geometry, a truncated cuboctahedral prism or great rhombicuboctahedral prism is a convex uniform polychoron.

<span class="mw-page-title-main">Prismatic uniform 4-polytope</span> Type of uniform 4-polytope in four-dimensional geography

In four-dimensional geometry, a prismatic uniform 4-polytope is a uniform 4-polytope with a nonconnected Coxeter diagram symmetry group. These figures are analogous to the set of prisms and antiprism uniform polyhedra, but add a third category called duoprisms, constructed as a product of two regular polygons.

References

  1. "Hanner polytopes".