PRKAR1A

Last updated
PRKAR1A
Protein PRKAR1A PDB 1ne4.png
Identifiers
Aliases PRKAR1A , ACRDYS1, ADOHR, CAR, CNC, CNC1, PKR1, PPNAD1, PRKAR1, TSE1, protein kinase cAMP-dependent type I regulatory subunit alpha
External IDs OMIM: 188830 MGI: 104878 HomoloGene: 37664 GeneCards: PRKAR1A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC) Chr 17: 68.51 – 68.55 Mb Chr 11: 109.54 – 109.56 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

cAMP-dependent protein kinase type I-alpha regulatory subunit is an enzyme that in humans is encoded by the PRKAR1A gene. [5]

Function

cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase A (PKA), which transduces the signal through phosphorylation of different target proteins. The inactive holoenzyme of PKA is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits of PKA have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This protein was found to be a tissue-specific extinguisher that down-regulates the expression of seven liver genes in hepatoma x fibroblast hybrids Three alternatively spliced transcript variants encoding the same protein have been observed. [6]

Clinical significance

Functional null mutations in this gene cause Carney complex (CNC), an autosomal dominant multiple neoplasia syndrome. This gene can fuse to the RET protooncogene by gene rearrangement and form the thyroid tumor-specific chimeric oncogene known as PTC2. [6]

Mutation of PRKAR1A leads to the Carney complex, associating multiple endocrine tumors.[ citation needed ]

Interactions

PRKAR1A has been shown to interact with:

See also

Related Research Articles

<span class="mw-page-title-main">Protein kinase A</span> Family of enzymes

In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase. PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. It should not be confused with 5'-AMP-activated protein kinase.

<span class="mw-page-title-main">PRKACA</span> Protein-coding gene in the species Homo sapiens

The catalytic subunit α of protein kinase A is a key regulatory enzyme that in humans is encoded by the PRKACA gene. This enzyme is responsible for phosphorylating other proteins and substrates, changing their activity. Protein kinase A catalytic subunit is a member of the AGC kinase family, and contributes to the control of cellular processes that include glucose metabolism, cell division, and contextual memory. PKA Cα is part of a larger protein complex that is responsible for controlling when and where proteins are phosphorylated. Defective regulation of PKA holoenzyme activity has been linked to the progression of cardiovascular disease, certain endocrine disorders and cancers.

<span class="mw-page-title-main">PRKAR2A</span>

cAMP-dependent protein kinase type II-alpha regulatory subunit is an enzyme that in humans is encoded by the PRKAR2A gene.

<span class="mw-page-title-main">PRKAR2B</span>

cAMP-dependent protein kinase type II-beta regulatory subunit is an enzyme that in humans is encoded by the PRKAR2B gene.

<span class="mw-page-title-main">AKAP13</span>

A-kinase anchor protein 13 is a protein that in humans is encoded by the AKAP13 gene. This protein is also called AKAP-Lbc because it encodes the lymphocyte blast crisis (Lbc) oncogene, and ARHGEF13/RhoGEF13 because it contains a guanine nucleotide exchange factor (GEF) domain for the RhoA small GTP-binding protein.

<span class="mw-page-title-main">AKAP5</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 5 is a protein that in humans is encoded by the AKAP5 gene.

<span class="mw-page-title-main">PRKACB</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase catalytic subunit beta is an enzyme that in humans is encoded by the PRKACB gene.

<span class="mw-page-title-main">AKAP9</span>

A-kinase anchor protein 9 is a protein that in humans is encoded by the AKAP9 gene. AKAP9 is also known as Centrosome- and Golgi-localized protein kinase N-associated protein (CG-NAP) or AKAP350 or AKAP450

<span class="mw-page-title-main">AKAP12</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 12, aka AKAP250, is an enzyme that in humans is encoded by the AKAP12 gene.

<span class="mw-page-title-main">PRKAR1B</span>

cAMP-dependent protein kinase type I-beta regulatory subunit is an enzyme that in humans is encoded by the PRKAR1B gene.

<span class="mw-page-title-main">AKAP1</span> Protein-coding gene in the species Homo sapiens

A kinase anchor protein 1, mitochondrial is an enzyme that in humans is encoded by the AKAP1 gene.

<span class="mw-page-title-main">AKAP8</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 8 is an enzyme that, in humans, is encoded by the AKAP8 gene.

<span class="mw-page-title-main">PRKACG</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase catalytic subunit gamma is an enzyme that in humans is encoded by the PRKACG gene.

<span class="mw-page-title-main">PKIA</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase inhibitor alpha is a protein that in humans is encoded by the PKIA gene.

<span class="mw-page-title-main">AKAP3</span>

A-kinase anchor protein 3 is an enzyme that in humans is encoded by the AKAP3 gene.

<span class="mw-page-title-main">AKAP11</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 11 is an enzyme that in humans is encoded by the AKAP11 gene.

<span class="mw-page-title-main">AKAP10</span> Protein-coding gene in the species Homo sapiens

A kinase anchor protein 10, mitochondrial is an enzyme that in humans is encoded by the AKAP10 gene.

<span class="mw-page-title-main">AKAP6</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 6 is an enzyme that in humans is encoded by the AKAP6 gene.

<span class="mw-page-title-main">AKAP7</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 7 isoform gamma is an enzyme that in humans is encoded by the AKAP7 gene.

The A-kinase anchoring proteins or A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins, which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. At least 20 AKAPs have been cloned. There are at least 50 members, often named after their molecular mass.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000108946 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020612 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Scambler P, Oyen O, Wainwright B, Farrall M, Law HY, Estivill X, Sandberg M, Williamson R, Jahnsen T (December 1987). "Exclusion of catalytic and regulatory subunits of cAMP-dependent protein kinase as candidate genes for the defect causing cystic fibrosis". Am J Hum Genet. 41 (5): 925–32. PMC   1684338 . PMID   3479018.
  6. 1 2 "Entrez Gene: PRKAR1A protein kinase, cAMP-dependent, regulatory, type I, alpha (tissue specific extinguisher 1)".
  7. Huang LJ, Durick K, Weiner JA, Chun J, Taylor SS (October 1997). "D-AKAP2, a novel protein kinase A anchoring protein with a putative RGS domain". Proc. Natl. Acad. Sci. U.S.A. 94 (21): 11184–9. Bibcode:1997PNAS...9411184J. doi: 10.1073/pnas.94.21.11184 . PMC   23409 . PMID   9326583.
  8. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID   16189514. S2CID   4427026.
  9. 1 2 Carlson CR, Ruppelt A, Taskén K (March 2003). "A kinase anchoring protein (AKAP) interaction and dimerization of the RIalpha and RIbeta regulatory subunits of protein kinase a in vivo by the yeast two hybrid system". J. Mol. Biol. 327 (3): 609–18. doi:10.1016/s0022-2836(03)00093-7. PMID   12634056.
  10. Herberg FW, Maleszka A, Eide T, Vossebein L, Tasken K (April 2000). "Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding". J. Mol. Biol. 298 (2): 329–39. doi:10.1006/jmbi.2000.3662. PMID   10764601.
  11. Brown PR, Miki K, Harper DB, Eddy EM (June 2003). "A-kinase anchoring protein 4 binding proteins in the fibrous sheath of the sperm flagellum". Biol. Reprod. 68 (6): 2241–8. doi: 10.1095/biolreprod.102.013466 . PMID   12606363.
  12. Miki K, Eddy EM (December 1998). "Identification of tethering domains for protein kinase A type Ialpha regulatory subunits on sperm fibrous sheath protein FSC1". J. Biol. Chem. 273 (51): 34384–90. doi: 10.1074/jbc.273.51.34384 . PMID   9852104.
  13. 1 2 Li H, Adamik R, Pacheco-Rodriguez G, Moss J, Vaughan M (February 2003). "Protein kinase A-anchoring (AKAP) domains in brefeldin A-inhibited guanine nucleotide-exchange protein 2 (BIG2)". Proc. Natl. Acad. Sci. U.S.A. 100 (4): 1627–32. Bibcode:2003PNAS..100.1627L. doi: 10.1073/pnas.0337678100 . PMC   149883 . PMID   12571360.
  14. Tortora G, Damiano V, Bianco C, Baldassarre G, Bianco AR, Lanfrancone L, Pelicci PG, Ciardiello F (February 1997). "The RIalpha subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-receptor". Oncogene. 14 (8): 923–8. doi: 10.1038/sj.onc.1200906 . PMID   9050991.
  15. Küssel-Andermann P, El-Amraoui A, Safieddine S, Hardelin JP, Nouaille S, Camonis J, Petit C (September 2000). "Unconventional myosin VIIA is a novel A-kinase-anchoring protein". J. Biol. Chem. 275 (38): 29654–9. doi: 10.1074/jbc.M004393200 . PMID   10889203.
  16. Taskén K, Skålhegg BS, Solberg R, Andersson KB, Taylor SS, Lea T, Blomhoff HK, Jahnsen T, Hansson V (October 1993). "Novel isozymes of cAMP-dependent protein kinase exist in human cells due to formation of RI alpha-RI beta heterodimeric complexes". J. Biol. Chem. 268 (28): 21276–83. doi: 10.1016/S0021-9258(19)36921-2 . PMID   8407966.
  17. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3: 89. doi:10.1038/msb4100134. PMC   1847948 . PMID   17353931.

Further reading


This article incorporates text from the United States National Library of Medicine, which is in the public domain.