Paenibacillus

Last updated

Paenibacillus
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Paenibacillus

Ash et al. 1994
Species

P. agarexedens
P. agaridevorans
P. alginolyticus
P. alkaliterrae
P. alvei
P. amylolyticus
P. anaericanus
P. antarcticus
P. apiarius
P. assamensis
P. azoreducens
P. azotofixans
P. barcinonensis
P. borealis
P. brasilensis
P. brassicae [1]
P. campinasensis
P. chinjuensis
P. chitinolyticus
P. chondroitinus
P. cineris
P. cookii
P. curdlanolyticus
P. daejeonensis
P. dendritiformis
P. durum
P. ehimensis
P. elgii
P. favisporus
P. glucanolyticus
P. glycanilyticus
P. gordonae
P. graminis
P. granivorans
P. hodogayensis
P. illinoisensis
P. jamilae
P. kobensis
P. koleovorans
P. koreensis
P. kribbensis
P. lactis
P. larvae
P. lautus
P. lentimorbus
P. macerans
P. macquariensis
P. massiliensis
P. mendelii
P. motobuensis
P. naphthalenovorans
P. nematophilus
P. odorifer
P. pabuli
P. peoriae
P. phoenicis
P. phyllosphaerae
P. polymyxa [2] [3] [4] [5] [6] [7]
P. popilliae
P. pulvifaciens
P. rhizosphaerae
P. sanguinis
P. stellifer
Paenibacillus stellifer#1. Morphology: P. terrae
P. thiaminolyticus
P. timonensis
P. tundrae
P. turicensis
P. tylopili
P. validus
P. vortex
P. vulneris
P. wynnii
P. xylanilyticus

Contents

Paenibacillus is a genus of facultative anaerobic, endospore-forming bacteria, originally included within the genus Bacillus and then reclassified as a separate genus in 1993. [8] Bacteria belonging to this genus have been detected in a variety of environments, such as: soil, water, rhizosphere, vegetable matter, forage and insect larvae, as well as clinical samples. [9] [10] [11] [12] The name reflects: Latin paene means almost, so the paenibacilli are literally "almost bacilli". The genus includes P. larvae , which causes American foulbrood in honeybees, P. polymyxa , which is capable of fixing nitrogen, so is used in agriculture and horticulture, the Paenibacillus sp. JDR-2 which is a rich source of chemical agents for biotechnology applications, and pattern-forming strains such as P. vortex and P. dendritiformis discovered in the early 90s, [13] [14] [15] [16] [17] which develop complex colonies with intricate architectures [18] [19] [20] [21] [22] as shown in the pictures:

Importance

Interest in Paenibacillus spp. has been rapidly growing since many were shown to be important [23] [24] [25] for agriculture and horticulture (e.g. P. polymyxa), industrial (e.g. P. amylolyticus), and medical applications (e.g. P. peoriate). These bacteria produce various extracellular enzymes such as polysaccharide-degrading enzymes and proteases, which can catalyze a wide variety of synthetic reactions in fields ranging from cosmetics to biofuel production. Various Paenibacillus spp. also produce antimicrobial substances that affect a wide spectrum of micro-organisms [26] [27] [28] such as fungi, soil bacteria, plant pathogenic bacteria, and even important anaerobic pathogens such as Clostridium botulinum .

More specifically, several Paenibacillus species serve as efficient plant growth-promoting rhizobacteria (PGPR), which competitively colonize plant roots and can simultaneously act as biofertilizers and as antagonists (biopesticides) of recognized root pathogens, such as bacteria, fungi, and nematodes. [29] They enhance plant growth by several direct and indirect mechanisms. Direct mechanisms include phosphate solubilization, nitrogen fixation, degradation of environmental pollutants, and hormone production. Indirect mechanisms include controlling phytopathogens by competing for resources such as iron, amino acids and sugars, as well as by producing antibiotics or lytic enzymes. [30] [31] Competition for iron also serves as a strong selective force determining the microbial population in the rhizosphere. Several studies show that PGPR exert their plant growth-promoting activity by depriving native microflora of iron. Although iron is abundant in nature, the extremely low solubility of Fe3+ at pH 7 means that most organisms face the problem of obtaining enough iron from their environments. To fulfill their requirements for iron, bacteria have developed several strategies, including the reduction of ferric to ferrous ions, the secretion of high-affinity iron-chelating compounds, called siderophores, and the uptake of heterologous siderophores. P. vortex's genome, for example, [32] harbors many genes which are employed in these strategies, in particular it has the potential to produce siderophores under iron-limiting conditions.

Despite the increasing interest in Paenibacillus spp., genomic information of these bacteria is lacking. More extensive genome sequencing could provide fundamental insights into pathways involved in complex social behavior of bacteria, and can discover a source of genes with biotechnological potential.

Candidatus Paenibacillus glabratella causes white nodules and high mortality of Biomphalaria glabrata freshwater snails. [33] This is potentially important because Biomphalaria glabrata is an intermediate host of schistosomiasis. [33]

A major challenge in the dairy industry is reducing premature spoilage of fluid milk caused by microbes. [34] Paenibacillus is often isolated from both raw and pasteurized fluid milk. The most predominant Paenibacillus species isolated is Paenibacillus odorifer . Species in the Paenibacillus genus can sporulate to survive the pasteurization of milk and are subsequently able to germinate in refrigerated milk, despite the low temperatures. Many bacterial genera have a cold shock response, which involves the production of cold shock proteins that help the cell facilitate global translation recovery. [34] Little is currently known about the cold shock response in Paenibacillus compared to other species, but it has been shown that Paenibacillus species contain many genetic elements associated with the cold shock response. [35] Paenibacillus odorifer was demonstrated to carry multiple copies of these cold shock associated genetics elements. [34]

Pattern formation, self-organization, and social behaviors

Several Paenibacillus species can form complex patterns on semisolid surfaces. Development of such complex colonies require self-organization and cooperative behavior of individual cells while employing sophisticated chemical communication called quorum sensing. [13] [14] [18] [20] [21] [36] [37] [38] Pattern formation and self-organization in microbial systems is an intriguing phenomenon and reflects social behaviors of bacteria [37] [39] that might provide insights into the evolutionary development of the collective action of cells in higher organisms. [13] [37] [40] [41] [42] [43] [44]

Pattern forming in P. vortex

One of the most fascinating pattern forming Paenibacillus species is P. vortex, self-lubricating, flagella-driven bacteria. [32] P. vortex organizes its colonies by generating modules, each consisting of many bacteria, which are used as building blocks for the colony as a whole. The modules are groups of bacteria that move around a common center at about 10 µm/s.

Pattern forming in P. dendritiformis

An additional intriguing pattern forming Paenibacillus species is P. dendritiformis, which generates two different morphotypes [13] [14] [18] [19] [20] [21] – the branching (or tip-splitting) morphotype and the chiral morphotype that is marked by curly branches with well-defined handedness (see pictures).

These two pattern-forming Paenibacillus strains exhibit many distinct physiological and genetic traits, including β-galactosidase-like activity causing colonies to turn blue on X-gal plates and multiple drug resistance (MDR) (including septrin, penicillin, kanamycin, chloramphenicol, ampicillin, tetracycline, spectinomycin, streptomycin, and mitomycin C). Colonies that are grown on surfaces in Petri dishes exhibit several-fold higher drug resistance in comparison to growth in liquid media. This particular resistance is believed to be due to a surfactant-like liquid front that actually forms a particular pattern on the Petri plate.

Related Research Articles

<i>Bacillus</i> Genus of bacteria

Bacillus is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum Bacillota, with 266 named species. The term is also used to describe the shape (rod) of other so-shaped bacteria; and the plural Bacilli is the name of the class of bacteria to which this genus belongs. Bacillus species can be either obligate aerobes which are dependent on oxygen, or facultative anaerobes which can survive in the absence of oxygen. Cultured Bacillus species test positive for the enzyme catalase if oxygen has been used or is present.

<span class="mw-page-title-main">Microbiological culture</span> Method of allowing microorganisms to multiply in a controlled medium

A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture medium under controlled laboratory conditions. Microbial cultures are foundational and basic diagnostic methods used as research tools in molecular biology.

<span class="mw-page-title-main">Polymyxin</span> Group of antibiotics

Polymyxins are antibiotics. Polymyxins B and E are used in the treatment of Gram-negative bacterial infections. They work mostly by breaking up the bacterial cell membrane. They are part of a broader class of molecules called nonribosomal peptides.

Collaborative intelligence characterizes multi-agent, distributed systems where each agent, human or machine, is autonomously contributing to a problem solving network. Collaborative autonomy of organisms in their ecosystems makes evolution possible. Natural ecosystems, where each organism's unique signature is derived from its genetics, circumstances, behavior and position in its ecosystem, offer principles for design of next generation social networks to support collaborative intelligence, crowdsourcing individual expertise, preferences, and unique contributions in a problem solving process.

<span class="mw-page-title-main">Endophyte</span>

An endophyte is an endosymbiont, often a bacterium or fungus, that lives within a plant for at least part of its life cycle without causing apparent disease. Endophytes are ubiquitous and have been found in all species of plants studied to date; however, most of the endophyte/plant relationships are not well understood. Some endophytes may enhance host growth, nutrient acquisition and improve the plant's ability to tolerate abiotic stresses, such as drought and decrease biotic stresses by enhancing plant resistance to insects, pathogens and herbivores. Although endophytic bacteria and fungi are frequently studied, endophytic archaea are increasingly being considered for their role in plant growth promotion as part of the core microbiome of a plant.

Diazotrophs are bacteria and archaea that fix gaseous nitrogen in the atmosphere into a more usable form such as ammonia.

Microbial intelligence is the intelligence shown by microorganisms. The concept encompasses complex adaptive behavior shown by single cells, and altruistic or cooperative behavior in populations of like or unlike cells mediated by chemical signalling that induces physiological or behavioral changes in cells and influences colony structures.

Paenibacillus polymyxa, also known as Bacillus polymyxa, is a Gram-positive bacterium capable of fixing nitrogen. It is found in soil, plant tissues, marine sediments and hot springs. It may have a role in forest ecosystems and potential future applications as a biofertilizer and biocontrol agent in agriculture.

<span class="mw-page-title-main">Bacteria</span> Domain of microorganisms

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

Pseudomonas lini is a fluorescent, Gram-negative, rod-shaped bacterium isolated from rhizospheric soil in France. The type strain is CFBP 5737, though there are also eight other strains known. This bacterium has also been isolated from endophytic tissues of lodgepole pine trees growing on gravel mining sites with potential to perform biological nitrogen fixation and plant growth promotion.

Pseudomonas migulae is a fluorescent, Gram-negative, rod-shaped bacterium isolated from natural mineral waters in France. This bacterium has also been isolated from endophytic tissues of lodgepole pine trees growing on gravel mining sites with potential to perform biological nitrogen fixation and plant growth promotion. Based on 16S rRNA analysis, P. migulae has been placed in the P. fluorescens group.

Paraburkholderia phytofirmans is a species of bacteria. They have been reported to colonize endophytic tissues of hybrid spruce and lodgepole pine with a strong potential to perform biological nitrogen fixation and plant growth promotion.

Caballeronia sordidicola is a species of bacteria which has been reported to perform biological nitrogen fixation and promote plant growth

<span class="mw-page-title-main">Prokaryote</span> Unicellular organism that lacks a membrane-bound nucleus

A prokaryote is a single-cell organism whose cell lacks a nucleus and other membrane-bound organelles. The word prokaryote comes from the Ancient Greek πρό 'before' and κάρυον 'nut, kernel'. In the two-empire system arising from the work of Édouard Chatton, prokaryotes were classified within the empire Prokaryota. But in the three-domain system, based upon molecular analysis, prokaryotes are divided into two domains: Bacteria and Archaea. Organisms with nuclei are placed in a third domain, Eukaryota.

<i>Paenibacillus vortex</i> Species of bacterium

Paenibacillus vortex is a species of pattern-forming bacteria, first discovered in the early 1990s by Eshel Ben-Jacob's group at Tel Aviv University. It is a social microorganism that forms colonies with complex and dynamic architectures. P. vortex is mainly found in heterogeneous and complex environments, such as the rhizosphere, the soil region directly influenced by plant roots.

<span class="mw-page-title-main">Paenibacillus dendritiformis</span> Species of bacterium

Paenibacillus dendritiformis is a species of pattern-forming bacteria, first discovered in the early 90s by Eshel Ben-Jacob's group. It is a social microorganism that forms colonies with complex and dynamic architectures. The genus Paenibacillus comprises facultative anaerobic, endospore-forming bacteria originally included within the genus Bacillus and then reclassified as a separate genus in 1993. Bacteria belonging to this genus have been detected in a variety of environments such as: soil, water, rhizosphere, vegetable matter, forage and insect larvae.

Caballeronia udeis is a bacterium from the genus Caballeronia and family Burkholderiaceae which has been reported to perform biological nitrogen fixation and promote plant growth

Paraburkholderia is a genus of Pseudomonadota that are gram negative, slightly curved rods that are motile by means of flagella. They have been reported to colonize endophytic tissues of hybrid spruce and lodgepole pine with a strong potential to perform biological nitrogen fixation and plant growth promotion. Unlike Burkholderia species, Paraburkholderia members are not commonly associated with human infection. Paraburkholderia members form a monophyletic clade within the Burkholderiaceae family, which is what prompted their distinction as a genus independent from Burkholderia species, in combination with the finding of robust conserved signature indels which are unique to Paraburkholderia species, and are lacking in members of the genus Burkholderia. These CSIs distinguish the genus from all other bacteria. Additionally, the CSIs that were found to be shared by Burkholderia species are absent in Paraburkholderia, providing evidence of separate lineages.

Caballeronia is a genus of bacteria from the family of Burkholderiaceae which has been reported to perform biological nitrogen fixation and promote plant growth

<span class="mw-page-title-main">Cyanobacterial morphology</span> Form and structure of a phylum

Cyanobacterial morphology refers to the form or shape of cyanobacteria. Cyanobacteria are a large and diverse phylum of bacteria defined by their unique combination of pigments and their ability to perform oxygenic photosynthesis.

References

  1. Gao M, Yang H, Zhao J, Liu J, Sun YH, Wang YJ, Sun JG (March 2013). "Paenibacillus brassicae sp. nov., isolated from cabbage rhizosphere in Beijing, China". Antonie van Leeuwenhoek. 103 (3): 647–653. doi:10.1007/s10482-012-9849-1. PMID   23180372. S2CID   18884588.
  2. Puri A, Padda KP, Chanway CP (October 2015). "Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth?". Soil Biology and Biochemistry. 89: 210–216. doi:10.1016/j.soilbio.2015.07.012.
  3. Puri A, Padda KP, Chanway CP (January 2016). "Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R". Biology and Fertility of Soils. 52 (1): 119–125. doi:10.1007/s00374-015-1051-y. S2CID   15963708.
  4. Puri A, Padda KP, Chanway CP (June 2016). "Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial". Symbiosis. 69 (2): 123–129. doi:10.1007/s13199-016-0385-z. S2CID   17870808.
  5. Padda KP, Puri A, Chanway CP (April 2016). "Effect of GFP tagging of Paenibacillus polymyxa P2b-2R on its ability to promote growth of canola and tomato seedlings". Biology and Fertility of Soils. 52 (3): 377–387. doi:10.1007/s00374-015-1083-3. S2CID   18149924.
  6. Padda KP, Puri A, Chanway CP (7 July 2016). "Plant growth promotion and nitrogen fixation in canola by an endophytic strain of Paenibacillus polymyxa and its GFP-tagged derivative in a long-term study". Botany. 94 (12): 1209–1217. doi:10.1139/cjb-2016-0075.
  7. Yang H, Puri A, Padda KP, Chanway CP (June 2016). "Effects of Paenibacillus polymyxa inoculation and different soil nitrogen treatments on lodgepole pine seedling growth". Canadian Journal of Forest Research. 46 (6): 816–821. doi:10.1139/cjfr-2015-0456. hdl: 1807/72264 .
  8. Ash C, Priest FG, Collins MD: Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993, 64:253-260.
  9. Padda KP, Puri A, Chanway CP (2017). "Paenibacillus polymyxa: A Prominent Biofertilizer and Biocontrol Agent for Sustainable Agriculture". Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. pp. 165–191. doi:10.1007/978-981-10-5343-6_6. ISBN   9789811053429.
  10. McSpadden Gardener BB (November 2004). "Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems". Phytopathology. 94 (11): 1252–1258. doi:10.1094/PHYTO.2004.94.11.1252. PMID   18944463.
  11. Montes MJ, Mercadé E, Bozal N, Guinea J (September 2004). "Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment". International Journal of Systematic and Evolutionary Microbiology. 54 (Pt 5): 1521–1526. doi: 10.1099/ijs.0.63078-0 . PMID   15388704.
  12. Ouyang J, Pei Z, Lutwick L, Dalal S, Yang L, Cassai N, et al. (2008). "Case report: Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis". Annals of Clinical and Laboratory Science. 38 (4): 393–400. PMC   2955490 . PMID   18988935.
  13. 1 2 3 4 Ben-Jacob E, Cohen I (1997). "Cooperative formation of bacterial patterns.". In Shapiro JA, Dworkin M (eds.). Bacteria as Multicellular Organisms. New York: Oxford University Press. pp. 394–416.
  14. 1 2 3 Ben-Jacob E, Cohen I, Gutnick DL (1998). "Cooperative organization of bacterial colonies: from genotype to morphotype". Annual Review of Microbiology. 52: 779–806. doi:10.1146/annurev.micro.52.1.779. PMID   9891813.
  15. Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirók A, Vicsek T (March 1994). "Generic modelling of cooperative growth patterns in bacterial colonies". Nature. 368 (6466): 46–9. Bibcode:1994Natur.368...46B. doi:10.1038/368046a0. PMID   8107881. S2CID   3054995.
  16. Ben-Jacob E, Shmueli H, Shochet O, Tenenbaum A (September 1992). "Adaptive self-organization during growth of bacterial colonies". Physica A: Statistical Mechanics and Its Applications. 187 (3–4): 378–424. Bibcode:1992PhyA..187..378B. doi:10.1016/0378-4371(92)90002-8.
  17. Ben-Jacob E, Shochet O, Tenenbaum A, Avidan O (1995). "Evolution of complexity during growth of bacterial colonies.". In Cladis PE, Palffy-Muhorey P (eds.). NATO Advanced Research Workshop; Santa Fe, USA. Addison-Wesley Publishing Company. pp. 619–633.
  18. 1 2 3 Ben-Jacob E (June 2003). "Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment". Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences. 361 (1807): 1283–312. Bibcode:2003RSPTA.361.1283B. doi:10.1098/rsta.2003.1199. PMID   12816612. S2CID   5213232.
  19. 1 2 Ben-Jacob E, Cohen I, Golding I, Gutnick DL, Tcherpakov M, Helbing D, Ron IG (July 2000). "Bacterial cooperative organization under antibiotic stress". Physica A: Statistical Mechanics and Its Applications. 282 (1–2): 247–82. Bibcode:2000PhyA..282..247B. doi:10.1016/S0378-4371(00)00093-5.
  20. 1 2 3 Ben-Jacob E, Cohen I, Levine H (June 2000). "Cooperative self-organization of microorganisms". Advances in Physics. 49 (4): 395–554. Bibcode:2000AdPhy..49..395B. doi:10.1080/000187300405228. S2CID   121881941.
  21. 1 2 3 Ben-Jacob E, Levine H (February 2006). "Self-engineering capabilities of bacteria". Journal of the Royal Society, Interface. 3 (6): 197–214. doi:10.1098/rsif.2005.0089. PMC   1618491 . PMID   16849231.
  22. Ingham CJ, Ben Jacob E (February 2008). "Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells". BMC Microbiology. 8: 36. doi: 10.1186/1471-2180-8-36 . PMC   2268691 . PMID   18298829.
  23. Choi KK, Park CW, Kim SY, Lyoo WS, Lee SH, Lee JW (2004). "Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paeniblacillus amylolyticus KCCM 10508 in dyeing wastewater". Journal of Microbiology and Biotechnology. 14: 1009–1013.
  24. Konishi J, Maruhashi K (September 2003). "2-(2'-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization". Applied Microbiology and Biotechnology. 62 (4): 356–61. doi:10.1007/s00253-003-1331-6. PMID   12743754. S2CID   7956236.
  25. Nielsen P, Sørensen J (March 1997). "Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere". FEMS Microbiology Ecology. 22 (3): 183–192. doi: 10.1111/j.1574-6941.1997.tb00370.x .
  26. Girardin H, Albagnac C, Dargaignaratz C, Nguyen-The C, Carlin F (May 2002). "Antimicrobial activity of foodborne Paenibacillus and Bacillus spp. against Clostridium botulinum". Journal of Food Protection. 65 (5): 806–13. doi: 10.4315/0362-028x-65.5.806 . PMID   12030292.
  27. Piuri M, Sanchez-Rivas C, Ruzal SM (July 1998). "A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages". Letters in Applied Microbiology. 27 (1): 9–13. doi:10.1046/j.1472-765x.1998.00374.x. hdl: 20.500.12110/paper_02668254_v27_n1_p9_Piuri . PMID   9722991. S2CID   34127618.
  28. von der Weid I, Alviano DS, Santos AL, Soares RM, Alviano CS, Seldin L (2003). "Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi". Journal of Applied Microbiology. 95 (5): 1143–51. doi:10.1046/j.1365-2672.2003.02097.x. PMID   14633044. S2CID   22884479.
  29. Bloemberg GV, Lugtenberg BJ (August 2001). "Molecular basis of plant growth promotion and biocontrol by rhizobacteria". Current Opinion in Plant Biology. 4 (4): 343–50. doi:10.1016/s1369-5266(00)00183-7. PMID   11418345.
  30. Kloepper JW, Leong J, Teintze M, Schroth MN (August 1980). "Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria". Nature. 286 (5776): 885–886. Bibcode:1980Natur.286..885K. doi:10.1038/286885a0. S2CID   40761689.
  31. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (April 2003). "Bacterial volatiles promote growth in Arabidopsis". Proceedings of the National Academy of Sciences of the United States of America. 100 (8): 4927–4932. Bibcode:2003PNAS..100.4927R. doi: 10.1073/pnas.0730845100 . PMC   153657 . PMID   12684534.
  32. 1 2 Sirota-Madi A, Olender T, Helman Y, Ingham C, Brainis I, Roth D, et al. (December 2010). "Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments". BMC Genomics. 11: 710. doi: 10.1186/1471-2164-11-710 . PMC   3012674 . PMID   21167037.
  33. 1 2 Duval D, Galinier R, Mouahid G, Toulza E, Allienne JF, Portela J, et al. (February 2015). "A novel bacterial pathogen of Biomphalaria glabrata: a potential weapon for schistosomiasis control?". PLOS Neglected Tropical Diseases. 9 (2): e0003489. doi: 10.1371/journal.pntd.0003489 . PMC   4342248 . PMID   25719489.
  34. 1 2 3 Beno SM, Cheng RA, Orsi RH, Duncan DR, Guo X, Kovac J, et al. (January 2020). Marco ML (ed.). "Paenibacillus odorifer, the Predominant Paenibacillus Species Isolated from Milk in the United States, Demonstrates Genetic and Phenotypic Conservation of Psychrotolerance but Clade-Associated Differences in Nitrogen Metabolic Pathways". mSphere. 5 (1). doi:10.1128/mSphere.00739-19. PMC   7407005 . PMID   31969477.
  35. Moreno Switt AI, Andrus AD, Ranieri ML, Orsi RH, Ivy R, den Bakker HC, et al. (January 2014). "Genomic comparison of sporeforming bacilli isolated from milk". BMC Genomics. 15 (1): 26. doi: 10.1186/1471-2164-15-26 . PMC   3902026 . PMID   24422886.
  36. Bassler BL, Losick R (April 2006). "Bacterially speaking". Cell. 125 (2): 237–46. doi: 10.1016/j.cell.2006.04.001 . PMID   16630813. S2CID   17056045.
  37. 1 2 3 Ben Jacob E, Becker I, Shapira Y, Levine H (August 2004). "Bacterial linguistic communication and social intelligence". Trends in Microbiology. 12 (8): 366–372. doi:10.1016/j.tim.2004.06.006. PMID   15276612.
  38. Dunny GM, Brickman TJ, Dworkin M (April 2008). "Multicellular behavior in bacteria: communication, cooperation, competition and cheating". BioEssays. 30 (4): 296–8. doi:10.1002/bies.20740. PMID   18348154.
  39. Galperin MY, Gomelsky M (2005). "Bacterial Signal Transduction Modules: from Genomics to Biology". ASM News. 71: 326–333.
  40. Aguilar C, Vlamakis H, Losick R, Kolter R (December 2007). "Thinking about Bacillus subtilis as a multicellular organism". Current Opinion in Microbiology. 10 (6): 638–643. doi:10.1016/j.mib.2007.09.006. PMC   2174258 . PMID   17977783.
  41. Dwyer DJ, Kohanski MA, Collins JJ (December 2008). "Networking opportunities for bacteria". Cell. 135 (7): 1153–6. doi:10.1016/j.cell.2008.12.016. PMC   2728295 . PMID   19109881.
  42. Kolter R, Greenberg EP (May 2006). "Microbial sciences: the superficial life of microbes". Nature. 441 (7091): 300–2. Bibcode:2006Natur.441..300K. doi: 10.1038/441300a . PMID   16710410. S2CID   4430171.
  43. Shapiro JA (1998). "Thinking about bacterial populations as multicellular organisms". Annual Review of Microbiology. 52: 81–104. doi:10.1146/annurev.micro.52.1.81. PMID   9891794.
  44. Shapiro JA, Dworkin M (1997). Bacteria as multicellular organisms (1st ed.). USA: Oxford University Press.

Further reading