Plane wave

Last updated

In physics, a plane wave is a special case of wave or field: a physical quantity whose value, at any moment, is constant through any plane that is perpendicular to a fixed direction in space. [1]

Contents

For any position in space and any time , the value of such a field can be written as

where is a unit-length vector, and is a function that gives the field's value as dependent on only two real parameters: the time , and the scalar-valued displacement of the point along the direction . The displacement is constant over each plane perpendicular to .

The values of the field may be scalars, vectors, or any other physical or mathematical quantity. They can be complex numbers, as in a complex exponential plane wave.

When the values of are vectors, the wave is said to be a longitudinal wave if the vectors are always collinear with the vector , and a transverse wave if they are always orthogonal (perpendicular) to it.

Special types

Traveling plane wave

The wavefronts of a plane wave traveling in 3-space Plane wave wavefronts 3D.svg
The wavefronts of a plane wave traveling in 3-space

Often the term "plane wave" refers specifically to a traveling plane wave , whose evolution in time can be described as simple translation of the field at a constant wave speed along the direction perpendicular to the wavefronts. Such a field can be written as

where is now a function of a single real parameter , that describes the "profile" of the wave, namely the value of the field at time , for each displacement . In that case, is called the direction of propagation . For each displacement , the moving plane perpendicular to at distance from the origin is called a "wavefront". This plane travels along the direction of propagation with velocity ; and the value of the field is then the same, and constant in time, at every one of its points. [2]

Sinusoidal plane wave

The term is also used, even more specifically, to mean a "monochromatic" or sinusoidal plane wave: a travelling plane wave whose profile is a sinusoidal function. That is,

The parameter , which may be a scalar or a vector, is called the amplitude of the wave; the scalar coefficient is its "spatial frequency"; and the scalar is its "phase".

A true plane wave cannot physically exist, because it would have to fill all space. Nevertheless, the plane wave model is important and widely used in physics. The waves emitted by any source with finite extent into a large homogeneous region of space can be well approximated by plane waves when viewed over any part of that region that is sufficiently small compared to its distance from the source. That is the case, for example, of the light waves from a distant star that arrive at a telescope.

Plane standing wave

A standing wave is a field whose value can be expressed as the product of two functions, one depending only on position, the other only on time. A plane standing wave, in particular, can be expressed as

where is a function of one scalar parameter (the displacement ) with scalar or vector values, and is a scalar function of time.

This representation is not unique, since the same field values are obtained if and are scaled by reciprocal factors. If is bounded in the time interval of interest (which is usually the case in physical contexts), and can be scaled so that the maximum value of is 1. Then will be the maximum field magnitude seen at the point .

Properties

A plane wave can be studied by ignoring the directions perpendicular to the direction vector ; that is, by considering the function as a wave in a one-dimensional medium.

Any local operator, linear or not, applied to a plane wave yields a plane wave. Any linear combination of plane waves with the same normal vector is also a plane wave.

For a scalar plane wave in two or three dimensions, the gradient of the field is always collinear with the direction ; specifically, , where is the partial derivative of with respect to the first argument.

The divergence of a vector-valued plane wave depends only on the projection of the vector in the direction . Specifically,

In particular, a transverse planar wave satisfies for all and .

See also

Related Research Articles

<span class="mw-page-title-main">Curl (mathematics)</span> Circulation density in a vector field

In vector calculus, the curl, also known as rotor, is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field.

<span class="mw-page-title-main">Divergence</span> Vector operator in vector calculus

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

<span class="mw-page-title-main">Gradient</span> Multivariate derivative (mathematics)

In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field whose value at a point gives the direction and the rate of fastest increase. The gradient transforms like a vector under change of basis of the space of variables of . If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to minimize a function by gradient descent. In coordinate-free terms, the gradient of a function may be defined by:

<span class="mw-page-title-main">Wave equation</span> Differential equation important in physics

The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves or electromagnetic waves. It arises in fields like acoustics, electromagnetism, and fluid dynamics.

In physics, a conservative force is a force with the property that the total work done by the force in moving a particle between two points is independent of the path taken. Equivalently, if a particle travels in a closed loop, the total work done by a conservative force is zero.

<span class="mw-page-title-main">Work (physics)</span> Process of energy transfer to an object via force application through displacement

In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if when applied it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.

Del, or nabla, is an operator used in mathematics as a vector differential operator, usually represented by the nabla symbol . When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus. When applied to a field, it may denote any one of three operations depending on the way it is applied: the gradient or (locally) steepest slope of a scalar field ; the divergence of a vector field; or the curl (rotation) of a vector field.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Stream function</span> Function for incompressible divergence-free flows in two dimensions

In fluid dynamics, two types of stream function are defined:

<span class="mw-page-title-main">Green's function</span> Impulse response of an inhomogeneous linear differential operator

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

<span class="mw-page-title-main">Scalar potential</span> When potential energy difference depends only on displacement

In mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.

A directional derivative is a concept in multivariable calculus that measures the rate at which a function changes in a particular direction at a given point.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

<span class="mw-page-title-main">Force field (physics)</span> Region of space in which a force acts

In physics, a force field is a vector field corresponding with a non-contact force acting on a particle at various positions in space. Specifically, a force field is a vector field , where is the force that a particle would feel if it were at the point .

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."

In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.

In physics, a sinusoidal plane wave is a special case of plane wave: a field whose value varies as a sinusoidal function of time and of the distance from some fixed plane. It is also called a monochromatic plane wave, with constant frequency.

<span class="mw-page-title-main">Traveling plane wave</span> Type of plane wave

In mathematics and physics, a traveling plane wave is a special case of plane wave, namely a field whose evolution in time can be described as simple translation of its values at a constant wave speed, along a fixed direction of propagation.

References

  1. Brekhovskikh, L. (1980). Waves in Layered Media (2 ed.). New York: Academic Press. pp. 1–3. ISBN   9780323161626.
  2. Jackson, John David (1998). Classical Electrodynamics (3 ed.). New York: Wiley. p. 296. ISBN   9780471309321.