Planetary oceanography

Last updated

Planetary oceanography, also called astro-oceanography or exo-oceanography, [1] is the study of oceans on planets and moons other than Earth. Unlike other planetary sciences like astrobiology, astrochemistry, and planetary geology, it only began after the discovery of underground oceans in Saturn's moon Titan [2] and Jupiter's moon Europa. [3] This field remains speculative until further missions reach the oceans beneath the rock or ice layer of the moons. There are many theories about oceans or even ocean worlds of celestial bodies in the Solar System, from oceans made of diamond in Neptune to a gigantic ocean of liquid hydrogen that may exist underneath Jupiter's surface. [4] [5]

Contents

Early in their geologic histories, Mars and Venus are theorized to have had large water oceans. The Mars ocean hypothesis suggests that nearly a third of the surface of Mars was once covered by water, and a runaway greenhouse effect may have boiled away the global ocean of Venus. Compounds such as salts and ammonia dissolved in water lower its freezing point so that water might exist in large quantities in extraterrestrial environments as brine or convecting ice. Unconfirmed oceans are speculated to exist beneath the surface of many dwarf planets and natural satellites; notably, the ocean of the moon Europa is estimated to have over twice the water volume of Earth's. The Solar System's giant planets are also thought to have liquid atmospheric layers of yet to be confirmed compositions. Oceans may also exist on exoplanets and exomoons, including surface oceans of liquid water within a circumstellar habitable zone. Ocean planets are a hypothetical type of planet with a surface completely covered with liquid. [6] [7]

Extraterrestrial oceans may be composed of water or other elements and compounds. The only confirmed large stable bodies of extraterrestrial surface liquids are the lakes of Titan, which are made of hydrocarbons instead of water. However, there is strong evidence for the existence of subsurface water oceans elsewhere in the Solar System. The best-established candidates for subsurface water oceans in the Solar System are Jupiter's moons Europa, Ganymede, and Callisto; and Saturn's moons Enceladus and Titan. [8]

Although Earth is the only known planet with large stable bodies of liquid water on its surface and the only one in the Solar System, other celestial bodies are thought to have large oceans. [9] In June 2020, NASA scientists reported that it is likely that exoplanets with oceans may be common in the Milky Way galaxy, based on mathematical modeling studies. [10] [11]

The inner structure of gas giants remain poorly understood. Scientists suspect that, under extreme pressure, hydrogen would act as a supercritical fluid, hence the likelihood of oceans of liquid hydrogen deep in the interior of gas giants like Jupiter. [12] [13] Oceans of liquid carbon have been hypothesized to exist on ice giants, notably Neptune and Uranus. [14] [15] Magma oceans exist during periods of accretion on any planet and some natural satellites when the planet or natural satellite is completely or partly molten. [16]

Extraterrestrial oceans

Artist's conception of subsurface ocean of Enceladus confirmed April 3, 2014. PIA19656-SaturnMoon-Enceladus-Ocean-ArtConcept-20150915.jpg
Artist's conception of subsurface ocean of Enceladus confirmed April 3, 2014.
Diagram of Europa's interior showing its global subsurface ocean Europa poster.svg
Diagram of Europa's interior showing its global subsurface ocean

Planets

The gas giants, Jupiter and Saturn, are thought to lack surfaces and instead have a stratum of liquid hydrogen; however their planetary geology is not well understood. The possibility of the ice giants Uranus and Neptune having hot, highly compressed, supercritical water under their thick atmospheres has been hypothesised. Although their composition is still not fully understood, a 2006 study by Wiktorowicz and Ingersall ruled out the possibility of such a water "ocean" existing on Neptune, [19] though some studies have suggested that exotic oceans of liquid diamond are possible. [20]

The Mars ocean hypothesis suggests that nearly a third of the surface of Mars was once covered by water, though the water on Mars is no longer oceanic (much of it residing in the ice caps). The possibility continues to be studied along with reasons for their apparent disappearance. Some astronomers now propose that Venus may have had liquid water and perhaps oceans for over 2 billion years. [21]

Natural satellites

A global layer of liquid water thick enough to decouple the crust from the mantle is thought to be present on the natural satellites Titan, Europa, Enceladus, Ganymede, [22] [23] and Triton; [24] [25] and, with less certainty, in Callisto, [26] [27] Mimas, [28] Miranda, and Ariel. [29] A magma ocean is thought to be present on Io. [30] Geysers or fumaroles have been found on Saturn's moon Enceladus, possibly originating from an ocean about 10 kilometers (6.2 mi) beneath the surface ice shell. [17] Other icy moons may also have internal oceans, or may once have had internal oceans that have now frozen. [31]

Large bodies of liquid hydrocarbons are thought to be present on the surface of Titan, although they are not large enough to be considered oceans and are sometimes referred to as lakes or seas. The Cassini–Huygens space mission initially discovered only what appeared to be dry lakebeds and empty river channels, suggesting that Titan had lost what surface liquids it might have had. Later flybys of Titan provided radar and infrared images that showed a series of hydrocarbon lakes in the colder polar regions. Titan is thought to have a subsurface liquid-water ocean under the ice in addition to the hydrocarbon mix that forms atop its outer crust.

Dwarf planets and trans-Neptunian objects

Diagram showing a possible internal structure of Ceres Ceres Cutaway-en.svg
Diagram showing a possible internal structure of Ceres

Ceres appears to be differentiated into a rocky core and icy mantle and may harbour a liquid-water ocean under its surface. [32] [33]

Not enough is known of the larger trans-Neptunian objects to determine whether they are differentiated bodies capable of supporting oceans, although models of radioactive decay suggest that Pluto, [34] Eris, Sedna, and Orcus have oceans beneath solid icy crusts approximately 100 to 180 km thick. [31] In June 2020, astronomers reported evidence that the dwarf planet Pluto may have had a subsurface ocean, and consequently may have been habitable, when it was first formed. [35] [36]

Extrasolar

Rendering of a hypothetical large extrasolar moon with surface liquid-water oceans UpsilonAndromedae D moons.jpg
Rendering of a hypothetical large extrasolar moon with surface liquid-water oceans

Some planets and natural satellites outside the Solar System are likely to have oceans, including possible water ocean planets similar to Earth in the habitable zone or "liquid-water belt". The detection of oceans, even through the spectroscopy method, however is likely extremely difficult and inconclusive.

Theoretical models have been used to predict with high probability that GJ 1214 b, detected by transit, is composed of exotic form of ice VII, making up 75% of its mass, [37] making it an ocean planet.

Other possible candidates are merely speculative based on their mass and position in the habitable zone include planet though little is actually known of their composition. Some scientists speculate Kepler-22b may be an "ocean-like" planet. [38] Models have been proposed for Gliese 581 d that could include surface oceans. Gliese 436 b is speculated to have an ocean of "hot ice". [39] Exomoons orbiting planets, particularly gas giants within their parent star's habitable zone may theoretically have surface oceans.

Terrestrial planets will acquire water during their accretion, some of which will be buried in the magma ocean but most of it will go into a steam atmosphere, and when the atmosphere cools it will collapse on to the surface forming an ocean. There will also be outgassing of water from the mantle as the magma solidifies—this will happen even for planets with a low percentage of their mass composed of water, so "super-Earth exoplanets may be expected to commonly produce water oceans within tens to hundreds of millions of years of their last major accretionary impact." [40]

Non-water surface liquids

False-color mosaic of synthetic aperture radar of Kraken Mare on Titan, the largest known body of surface liquid beside Earth's Ocean. The large island Mayda Insula is left of top center, and Jingpo Lacus is at upper left. A portion of Ligeia Mare enters the view at top right. PIA17655 Kraken Mare crop no labels.jpg
False-color mosaic of synthetic aperture radar of Kraken Mare on Titan, the largest known body of surface liquid beside Earth's Ocean. The large island Mayda Insula is left of top center, and Jingpo Lacus is at upper left. A portion of Ligeia Mare enters the view at top right.

Oceans, seas, lakes and other bodies of liquids can be composed of liquids other than water, for example the hydrocarbon lakes on Titan. The possibility of seas of nitrogen on Triton was also considered but ruled out. [41] There is evidence that the icy surfaces of the moons Ganymede, Callisto, Europa, Titan and Enceladus are shells floating on oceans of very dense liquid water or water–ammonia solution. [42] [43] [44] [45] [46]

Extrasolar terrestrial planets that are extremely close to their parent star will be tidally locked and so one half of the planet will be a magma ocean. [47] It is also possible that terrestrial planets had magma oceans at some point during their formation as a result of giant impacts. [48] Hot Neptunes close to their star could lose their atmospheres via hydrodynamic escape, leaving behind their cores with various liquids on the surface. [49] Where there are suitable temperatures and pressures, volatile chemicals that might exist as liquids in abundant quantities on planets (thalassogens) include ammonia, argon, carbon disulfide, ethane, hydrazine, hydrogen, hydrogen cyanide, hydrogen sulfide, methane, neon, nitrogen, nitric oxide, phosphine, silane, sulfuric acid, and water. [50]

Supercritical fluids, although not liquids, do share various properties with liquids. Underneath the thick atmospheres of the planets Uranus and Neptune, it is expected that these planets are composed of oceans of hot high-density fluid mixtures of water, ammonia and other volatiles. [51] The gaseous outer layers of Jupiter and Saturn transition smoothly into oceans of supercritical hydrogen. [52] [53] The atmosphere of Venus is 96.5% carbon dioxide, and is a supercritical fluid at the surface.

See also

Related Research Articles

<span class="mw-page-title-main">Callisto (moon)</span> Second-largest moon of Jupiter

Callisto, or Jupiter IV, is the second-largest moon of Jupiter, after Ganymede. In the Solar System it is the third-largest moon after Ganymede and Saturn's largest moon Titan, and as large as the smallest planet Mercury, though only about a third as massive. Callisto is, with a diameter of 4,821 km, roughly a third larger than Earth's Moon and orbits Jupiter on average at a distance of 1,883,000 km, which is about six times further out than the Moon orbiting Earth. It is the outermost of the four large Galilean moons of Jupiter, which were discovered in 1610 with one of the first telescopes, being visible from Earth with common binoculars.

<span class="mw-page-title-main">Europa (moon)</span> Smallest Galilean moon of Jupiter

Europa, or Jupiter II, is the smallest of the four Galilean moons orbiting Jupiter, and the sixth-closest to the planet of all the 95 known moons of Jupiter. It is also the sixth-largest moon in the Solar System. Europa was discovered independently by Simon Marius and Galileo Galilei and was named after Europa, the Phoenician mother of King Minos of Crete and lover of Zeus.

<span class="mw-page-title-main">Saturn</span> Sixth planet from the Sun

Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine-and-a-half times that of Earth. It has only one-eighth the average density of Earth, but is over 95 times more massive. Even though Saturn is nearly the size of Jupiter, Saturn has less than one-third of Jupiter's mass. Saturn orbits the Sun at a distance of 9.59 AU (1,434 million km) with an orbital period of 29.45 years.

<span class="mw-page-title-main">Titan (moon)</span> Largest moon of Saturn and second-largest moon in Solar System

Titan is the largest moon of Saturn and the second-largest in the Solar System, larger than any of the dwarf planets of the Solar System. It is the only moon known to have an atmosphere denser than the Earth's, and is the only known object in space other than Earth on which clear evidence of stable bodies of surface liquid has been found.

<span class="mw-page-title-main">Terrestrial planet</span> Planet that is composed primarily of silicate rocks or metals

A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, Venus, Earth and Mars. Among astronomers who use the geophysical definition of a planet, two or three planetary-mass satellites – Earth's Moon, Io, and sometimes Europa – may also be considered terrestrial planets. The large rocky asteroids Pallas and Vesta are sometimes included as well, albeit rarely. The terms "terrestrial planet" and "telluric planet" are derived from Latin words for Earth, as these planets are, in terms of structure, Earth-like. Terrestrial planets are generally studied by geologists, astronomers, and geophysicists.

<span class="mw-page-title-main">Natural satellite</span> Astronomical body that orbits a planet

A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body. Natural satellites are colloquially referred to as moons, a derivation from the Moon of Earth.

<span class="mw-page-title-main">Ganymede (moon)</span> Largest moon of Jupiter and in the Solar System

Ganymede, or Jupiter III, is the largest and most massive natural satellite of Jupiter as well as the largest in the Solar System, being a planetary-mass moon. It is the largest Solar System object without a substantial atmosphere, despite being the only moon in the Solar System with a substantial magnetic field. Like Titan, Saturn's largest moon, it is larger than the planet Mercury, but has somewhat less surface gravity than Mercury, Io, or the Moon due to its lower density compared to the three.

<span class="mw-page-title-main">Rhea (moon)</span> Moon of Saturn

Rhea is the second-largest moon of Saturn and the ninth-largest moon in the Solar System, with a surface area that is comparable to the area of Australia. It is the smallest body in the Solar System for which precise measurements have confirmed a shape consistent with hydrostatic equilibrium. It was discovered in 1672 by Giovanni Domenico Cassini.

Icy moons are a class of natural satellites with surfaces composed mostly of ice. An icy moon may harbor an ocean underneath the surface, and possibly include a rocky core of silicate or metallic rocks. It is thought that they may be composed of ice II or other polymorph of water ice. The prime example of this class of object is Europa.

<span class="mw-page-title-main">Enceladus</span> Natural satellite orbiting Saturn

Enceladus is the sixth-largest moon of Saturn. It is about 500 kilometers in diameter, about a tenth of that of Saturn's largest moon, Titan. It is mostly covered by fresh, clean ice, making it one of the most reflective bodies of the Solar System. Consequently, its surface temperature at noon reaches only −198 °C, far colder than a light-absorbing body would be. Despite its small size, Enceladus has a wide variety of surface features, ranging from old, heavily cratered regions to young, tectonically deformed terrain.

<span class="mw-page-title-main">Cryovolcano</span> Type of volcano that erupts volatiles such as water, ammonia or methane, instead of molten rock

A cryovolcano is a type of volcano that erupts gasses and volatile material such as liquid water, ammonia, and hydrocarbons, collectively referred to as cryolava, from a reservoir of subsurface cryomagma. These eruptions can take many forms, such as fissure and curtain eruptions, effusive cryolava flows, and large-scale resurfacing, and can vary greatly in output volumes. Immediately after an eruption, cryolava quickly freezes, constructing geological features and altering the surface.

<span class="mw-page-title-main">Ocean world</span> Planet containing a significant amount of water or other liquid

An ocean world, ocean planet, panthalassic planet, maritime world, water world or aquaplanet, is a type of planet that contains a substantial amount of water in the form of oceans, as part of its hydrosphere, either beneath the surface, as subsurface oceans, or on the surface, potentially submerging all dry land. The term ocean world is also used sometimes for astronomical bodies with an ocean composed of a different fluid or thalassogen, such as lava, ammonia or hydrocarbons. The study of extraterrestrial oceans is referred to as planetary oceanography.

Extraterrestrial liquid water is water in its liquid state that naturally occurs outside Earth. It is a subject of wide interest because it is recognized as one of the key prerequisites for life as we know it and is thus surmised to be essential for extraterrestrial life.

<span class="mw-page-title-main">Habitability of natural satellites</span> Measure of the potential of natural satellites to have environments hospitable to life

The habitability of natural satellites is the potential of moons to provide habitats for life, though it is not an indicator that they harbor it. Natural satellites are expected to outnumber planets by a large margin and the study of their habitability is therefore important to astrobiology and the search for extraterrestrial life. There are, nevertheless, significant environmental variables specific to moons.

<span class="mw-page-title-main">Regular moon</span> Satellites which formed around their parent planet

In astronomy, a regular moon or a regular satellite is a natural satellite following a relatively close, stable, and circular orbit which is generally aligned to its primary's equator. They form within discs of debris and gas that once surrounded their primary, usually the aftermath of a large collision or leftover material accumulated from the protoplanetary disc. Young regular moons then begin to accumulate material within the circumplanetary disc in a process similar to planetary accretion, as opposed to irregular moons, which formed independently before being captured into orbit around the primary.

<span class="mw-page-title-main">Planetary-mass moon</span> Planetary-mass bodies that are also natural satellites

A planetary-mass moon is a planetary-mass object that is also a natural satellite. They are large and ellipsoidal in shape. Moons may be in hydrostatic equilibrium due to tidal or radiogenic heating, in some cases forming a subsurface ocean. Two moons in the Solar System are larger than the planet Mercury : Ganymede and Titan, and seven are larger and more massive than the dwarf planets Pluto and Eris.

<span class="mw-page-title-main">Ice planet</span> Planet with an icy surface

An ice planet or icy planet is a type of planet with an icy surface of volatiles such as water, ammonia, and methane. Ice planets consist of a global cryosphere.

<span class="mw-page-title-main">Ocean Worlds Exploration Program</span> NASA program for the exploration of water worlds in the Solar System

The Ocean Worlds Exploration Program (OWEP) is a NASA program to explore ocean worlds in the outer Solar System that could possess subsurface oceans to assess their habitability and to seek biosignatures of simple extraterrestrial life.

<span class="mw-page-title-main">Planetary habitability in the Solar System</span> Habitability of the celestial bodies of the Solar System

Planetary habitability in the Solar System is the study that searches the possible existence of past or present extraterrestrial life in those celestial bodies. As exoplanets are too far away and can only be studied by indirect means, the celestial bodies in the Solar System allow for a much more detailed study: direct telescope observation, space probes, rovers and even human spaceflight.

References

  1. Hu, Yongyun (2015-08-01). "Exo-oceanography, climate, and habitability of tidal-locking exoplanets in the habitable zone of M dwarfs". IAU General Assembly. 22: 2245847. Bibcode:2015IAUGA..2245847H.
  2. "Titan's Underground Ocean | Science Mission Directorate".
  3. "NASA discovers an underground ocean on Jupiter's largest moon". The Washington Post .
  4. "10 Mind-Boggling Oceans That Exist in Space". 3 April 2015.
  5. "A Freaky Fluid inside Jupiter? | Science Mission Directorate".
  6. "Titan Likely To Have Huge Underground Ocean | Mind Blowing Science". Mindblowingscience.com. Retrieved 2012-11-08.
  7. "Ocean-bearing Planets: Looking For Extraterrestrial Life In All The Right Places". Sciencedaily.com. Retrieved 2012-11-08.
  8. Hendrix, Amanda R.; Hurford, Terry A.; Barge, Laura M.; Bland, Michael T.; Bowman, Jeff S.; Brinckerhoff, William; Buratti, Bonnie J.; Cable, Morgan L.; Castillo-Rogez, Julie; Collins, Geoffrey C.; et al. (2019). "The NASA Roadmap to Ocean Worlds". Astrobiology. 19 (1): 1–27. Bibcode:2019AsBio..19....1H. doi: 10.1089/ast.2018.1955 . PMC   6338575 . PMID   30346215.
  9. Dyches, Preston; Chou, Felcia (April 7, 2015). "The Solar System and Beyond is Awash in Water". NASA . Retrieved April 8, 2015.
  10. NASA (June 18, 2020). "Are planets with oceans common in the galaxy? It's likely, NASA scientists find". EurekAlert! . Retrieved June 20, 2020.
  11. Shekhtman, Lonnie; et al. (June 18, 2020). "Are Planets with Oceans Common in the Galaxy? It's Likely, NASA Scientists Find". NASA . Retrieved June 20, 2020.
  12. "A Freaky Fluid inside Jupiter?". NASA . Retrieved 8 December 2021.
  13. "NASA System Exploration Jupiter". NASA . Retrieved 8 December 2021.
  14. "Oceans of diamond possible on Uranus and Neptune". Astronomy Now . Retrieved 8 December 2021.
  15. Magazine, Smithsonian. "It May Rain Diamonds Inside Neptune and Uranus". Smithsonian Magazine . Retrieved 8 December 2021.
  16. Elkins-Tanton, Linda T. (2012). "Magma Oceans in the Inner Solar System". Annual Review of Earth and Planetary Sciences. 40 (1): 113–139. Bibcode:2012AREPS..40..113E. doi:10.1146/annurev-earth-042711-105503.
  17. 1 2 Platt, Jane; Bell, Brian (2014-04-03). "NASA Space Assets Detect Ocean inside Saturn Moon". NASA . Retrieved 2014-04-03.
  18. Iess, L.; Stevenson, D. J.; Parisi, M.; Hemingway, D.; et al. (4 April 2014). "The Gravity Field and Interior Structure of Enceladus" (PDF). Science . 344 (6179): 78–80. Bibcode:2014Sci...344...78I. doi:10.1126/science.1250551. PMID   24700854. S2CID   28990283.
  19. Wiktorowicz, Sloane J.; Ingersoll, Andrew P. (2007). "Liquid water oceans in ice giants". Icarus. 186 (2): 436–447. arXiv: astro-ph/0609723 . Bibcode:2007Icar..186..436W. doi:10.1016/j.icarus.2006.09.003. ISSN   0019-1035. S2CID   7829260.
  20. Silvera, Isaac (2010). "Diamond: Molten under pressure" (PDF). Nature Physics. 6 (1): 9–10. Bibcode:2010NatPh...6....9S. doi:10.1038/nphys1491. ISSN   1745-2473. S2CID   120836330.
  21. M. Way et al. "Was Venus the First Habitable World of Our Solar System?" Geophysical Research Letters, Vol. 43, Issue 16, pp. 8376-8383.
  22. Joachim, Saur; Duling, Stefan; Roth, Lorenz; Jia, Xianzhe; et al. (March 2015). "The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals". Journal of Geophysical Research: Space Physic. 120 (3): 1715–1737. Bibcode:2015JGRA..120.1715S. doi:10.1002/2014JA020778. hdl: 2027.42/111157 .
  23. Vance, Steve; Bouffard, Mathieu; Choukroun, Mathieu; Sotina, Christophe (12 April 2014). "Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice". Planetary and Space Science. 96: 62–70. Bibcode:2014P&SS...96...62V. doi:10.1016/j.pss.2014.03.011.
  24. Schenk, Paul; Beddingfield, Chloe; Bertrand, Tanguy; et al. (September 2021). "Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon". Remote Sensing. 13 (17): 3476. Bibcode:2021RemS...13.3476S. doi: 10.3390/rs13173476 .
  25. Ruiz, Javier (December 2003). "Heat flow and depth to a possible internal ocean on Triton" (PDF). Icarus. 166 (2): 436–439. Bibcode:2003Icar..166..436R. doi:10.1016/j.icarus.2003.09.009.
  26. Khurana, K. K.; Kivelson, M. G.; Stevenson, D. J.; Schubert, G.; Russell, C. T.; Walker, R. J.; Polanskey, C. (1998). "Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto" (PDF). Nature. 395 (6704): 777–780. Bibcode:1998Natur.395..777K. doi:10.1038/27394. PMID   9796812. S2CID   4424606. Archived (PDF) from the original on 2022-10-09.
  27. Zimmer, C.; Khurana, K. K.; Kivelson, Margaret G. (2000). "Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations" (PDF). Icarus. 147 (2): 329–347. Bibcode:2000Icar..147..329Z. CiteSeerX   10.1.1.366.7700 . doi:10.1006/icar.2000.6456. Archived (PDF) from the original on 2022-10-09.
  28. Lainey, V.; Rambaux, N.; Tobie, G.; Cooper, N.; Zhang, Q.; Noyelles, B.; Baillié, K. (February 2024). "A recently formed ocean inside Saturn's moon Mimas". Nature. 626 (7998): 280–282. Bibcode:2024Natur.626..280L. doi:10.1038/s41586-023-06975-9. ISSN   1476-4687. PMID   38326592 . Retrieved 9 February 2024.
  29. Jeremy, Rehm (16 March 2023). "Two of Uranus' Moons May Harbor Active Oceans, Radiation Data Suggests | Johns Hopkins University Applied Physics Laboratory". Johns Hopkins University Applied Physics Laboratory. Johns Hopkins University. Archived from the original on 28 January 2024. Retrieved 9 February 2024.
  30. Khurana, K. K.; Jia, X.; Kivelson, M. G.; Nimmo, F.; Schubert, G.; Russell, C. T. (12 May 2011). "Evidence of a Global Magma Ocean in Io's Interior". Science. 332 (6034): 1186–1189. Bibcode:2011Sci...332.1186K. doi: 10.1126/science.1201425 . PMID   21566160. S2CID   19389957.
  31. 1 2 Hussmann, Hauke; Sohl, Frank; Spohn, Tilman (November 2006). "Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects". Icarus . 185 (1): 258–273. Bibcode:2006Icar..185..258H. doi:10.1016/j.icarus.2006.06.005.
  32. McCord, Thomas B. (2005). "Ceres: Evolution and current state". Journal of Geophysical Research. 110 (E5): E05009. Bibcode:2005JGRE..110.5009M. doi: 10.1029/2004JE002244 .
  33. Castillo-Rogez, J. C.; McCord, T. B.; Davis, A. G. (2007). "Ceres: evolution and present state" (PDF). Lunar and Planetary Science. XXXVIII: 2006–2007. Retrieved 2009-06-25.
  34. "The Inside Story". pluto.jhuapl.edu — NASA New Horizons mission site. Johns Hopkins University Applied Physics Laboratory. 2013. Archived from the original on 13 November 2014. Retrieved 2 August 2013.
  35. Rabie, Passant (22 June 2020). "New Evidence Suggests Something Strange and Surprising about Pluto - The findings will make scientists rethink the habitability of Kuiper Belt objects". Inverse . Retrieved 23 June 2020.
  36. Bierson, Carver; et al. (22 June 2020). "Evidence for a hot start and early ocean formation on Pluto". Nature Geoscience . 769 (7): 468–472. Bibcode:2020NatGe..13..468B. doi:10.1038/s41561-020-0595-0. S2CID   219976751 . Retrieved 23 June 2020.
  37. Aguilar, David A. (2009-12-16). "Astronomers Find Super-Earth Using Amateur, Off-the-Shelf Technology". Harvard-Smithsonian Center for Astrophysics. Retrieved January 23, 2010.
  38. Mendez Torres, Abel (2011-12-08). "Updates on Exoplanets during the First Kepler Science Conference". Planetary Habitability Laboratory at UPR Arecibo.
  39. Fox, Maggie (May 16, 2007). "Hot "ice" may cover recently discovered planet". Reuters . Retrieved May 18, 2012.
  40. Elkins-Tanton (2010). "Formation of Early Water Oceans on Rocky Planets". Astrophysics and Space Science. 332 (2): 359–364. arXiv: 1011.2710 . Bibcode:2011Ap&SS.332..359E. doi:10.1007/s10509-010-0535-3. S2CID   53476552.
  41. McKinnon, William B.; Kirk, Randolph L. (2007). "Triton". In Lucy Ann Adams McFadden; Lucy-Ann Adams; Paul Robert Weissman; Torrence V. Johnson (eds.). Encyclopedia of the Solar System (2nd ed.). Amsterdam; Boston: Academic Press. p.  485. ISBN   978-0-12-088589-3.
  42. Coustenis, A.; Lunine, Jonathan I.; Lebreton, J.; Matson, D.; et al. (2008). "The Titan Saturn System Mission". American Geophysical Union, Fall Meeting. 21: 1346. Bibcode:2008AGUFM.P21A1346C. the Titan system, rich in organics, containing a vast subsurface ocean of liquid water
  43. Nimmo, F.; Bills, B. G. (2010). "Shell thickness variations and the long-wavelength topography of Titan". Icarus. 208 (2): 896–904. Bibcode:2010Icar..208..896N. doi:10.1016/j.icarus.2010.02.020. observations can be explained if Titan has a floating, isostatically-compensated ice shell
  44. Goldreich, Peter M.; Mitchell, Jonathan L. (2010). "Elastic ice shells of synchronous moons: Implications for cracks on Europa and non-synchronous rotation of Titan". Icarus. 209 (2): 631–638. arXiv: 0910.0032 . Bibcode:2010Icar..209..631G. doi:10.1016/j.icarus.2010.04.013. S2CID   119282970. A number of synchronous moons are thought to harbor water oceans beneath their outer ice shells. A subsurface ocean frictionally decouples the shell from the interior
  45. "Study of the ice shells and possible subsurface oceans of the Galilean satellites using laser altimeters on board the Europa and Ganymede orbiters JEO and JGO" (PDF). Retrieved 2011-10-14.
  46. "Tidal heating and the long-term stability of a subsurface ocean on Enceladus" (PDF). Archived from the original (PDF) on 2010-07-21. Retrieved 2011-10-14.
  47. Schaefer, Laura; Fegley, Bruce Jr. (2009). "Chemistry of Silicate Atmospheres of Evaporating Super-Earths". The Astrophysical Journal Letters. 703 (2): L113–L117. arXiv: 0906.1204 . Bibcode:2009ApJ...703L.113S. doi:10.1088/0004-637X/703/2/L113. S2CID   28361321.
  48. Solomatov, V. S. (2000). "Fluid Dynamics of a Terrestrial Magma Ocean" (PDF). Archived from the original (PDF) on 2012-03-24. Retrieved 2021-02-26.
  49. Leitner, J.J.; Lammer, H.; Odert, P.; Leitzinger, M.; et al. (2009). Atmospheric Loss of Sub-Neptune's and Implications for Liquid Phases of Different Solvents on Their Surfaces (PDF). European Planetary Science Congress. EPSC Abstracts. Vol. 4. p. 542. Bibcode:2009epsc.conf..542L. EPSC2009-542.
  50. Tables 3 and 4 in Bains, William (2004). "Many Chemistries Could Be Used to Build Living Systems" (PDF). Astrobiology.
  51. Atreya, S.; Egeler, P.; Baines, K. (2006). "Water-ammonia ionic ocean on Uranus and Neptune?" (PDF). Geophysical Research Abstracts. 8: P11A–0088. Bibcode:2005AGUFM.P11A0088A.
  52. Guillot, T. (1999). "A comparison of the interiors of Jupiter and Saturn" (PDF). Planetary and Space Science. 47 (10–11): 1183–200. arXiv: astro-ph/9907402 . Bibcode:1999P&SS...47.1183G. doi:10.1016/S0032-0633(99)00043-4. S2CID   19024073.
  53. Lang, Kenneth R. (2003). "Jupiter: a giant primitive planet". NASA. Retrieved 2007-01-10.