Potassium-40

Last updated
Potassium-40, 40K
General
Symbol 40K
Names potassium-40, 40K, K-40
Protons (Z)19
Neutrons (N)21
Nuclide data
Natural abundance 0.0117(1)%
Half-life (t1/2)1.251(3)×109 y
Isotope mass 39.96399848(21) Da
Spin 4
Excess energy −33505 keV
Binding energy 341523 keV
Parent isotopes Primordial
Decay products 40Ca (β)
40Ar (EC, γ; β+)
Decay modes
Decay mode Decay energy (MeV)
β1.31109
EC, γ1.5049
Isotopes of potassium
Complete table of nuclides

Potassium-40 (40K) is a radioactive isotope of potassium which has a long half-life of 1.25 billion years. It makes up about 0.012% (120 ppm) of the total amount of potassium found in nature.

Contents

Potassium-40 undergoes three types of radioactive decay. In about 89.28% of events, it decays to calcium-40 (40Ca) with emission of a beta particle, an electron) with a maximum energy of 1.31  MeV and an antineutrino. In about 10.72% of events, it decays to argon-40 (40Ar) by electron capture (EC), with the emission of a neutrino and then a 1.460 MeV gamma ray. [Note 1] The radioactive decay of this particular isotope explains the large abundance of argon (nearly 1%) in the Earth's atmosphere, as well as prevalence of 40Ar over other isotopes. Very rarely (0.001% of events), it decays to 40Ar by emitting a positron+) and a neutrino. [1]

Potassium–argon dating

Decay scheme Potassium-40-decay-scheme.svg
Decay scheme

Potassium-40 is especially important in potassium–argon (K–Ar) dating. Argon is a gas that does not ordinarily combine with other elements. So, when a mineral forms – whether from molten rock, or from substances dissolved in water – it will be initially argon-free, even if there is some argon in the liquid. However, if the mineral contains any potassium, then decay of the 40K isotope present will create fresh argon-40 that will remain locked up in the mineral. Since the rate at which this conversion occurs is known, it is possible to determine the elapsed time since the mineral formed by measuring the ratio of 40K and 40Ar atoms contained in it.

The argon found in Earth's atmosphere is 99.6% 40Ar; whereas the argon in the Sun – and presumably in the primordial material that condensed into the planets – is mostly 36Ar, with less than 15% of 38Ar. It follows that most of the terrestrial argon derives from potassium-40 that decayed into argon-40, which eventually escaped to the atmosphere.

Contribution to natural radioactivity

The evolution of Earth's mantle radiogenic heat flow over time: contribution from K in yellow. Evolution of Earth's radiogenic heat.svg
The evolution of Earth's mantle radiogenic heat flow over time: contribution from K in yellow.

The radioactive decay of 40K in the Earth's mantle ranks third, after 232Th and 238U, as the source of radiogenic heat. The core also likely contains radiogenic sources, although how much is uncertain. It has been proposed that significant core radioactivity (1–2 TW) may be caused by high levels of U, Th, and K. [2] [3]

Potassium-40 is the largest source of natural radioactivity in animals including humans. A 70 kg human body contains about 140 g of potassium, hence about 140g × 0.0117% ≈ 16.4 mg of 40K; [4] whose decay produces about 3850 [5] to 4300 disintegrations per second (becquerel) continuously throughout the life of the person. [Note 2] [6]

Banana equivalent dose

Potassium-40 is famous for its usage in the banana equivalent dose, an informal unit of measurement, primarily used in generalized educational settings, to compare radioactive dosages to the amount received by consuming one banana. The radioactive dosage from consuming one banana is generally agreed to be 10−7  sievert, or 0.1 microsievert, which is 1% of the average American's daily radioactive intake. [7]

See also

Notes

  1. This photon would be called an x-ray if emitted from an electron. In nuclear physics, it is common to name photons according to their origin rather than their energy, high energy photons produced by electrical transitions are called "x-rays" while those emitted from atomic nuclei are called "gamma rays" irrespective of their energy.
  2. The number of radioactive decays per second in a given mass of 40K is the number of atoms in that mass, divided by the average lifetime of a 40K atom in seconds. The number of atoms in one gram of 40K is the Avogadro constant 6.022×1023 mol−1 divided by the atomic weight of potassium-40 (39.96 g/mol), which is about 0.1507×1023 per gram. As in any exponential decay, the average lifetime is the half-life divided by the natural logarithm of 2, or about 56.82×1015 seconds.

Related Research Articles

<span class="mw-page-title-main">Atom</span> Smallest unit of a chemical element

The atom is the basic particle of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other by the number of protons that are in their atoms. For example, any atom that contains 11 protons is sodium, and any atom that contains 29 protons is copper. Atoms with the same number of protons but a different number of neutrons are called isotopes of the same element.

<span class="mw-page-title-main">Beta decay</span> Type of radioactive decay

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle, transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in so-called positron emission. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

<span class="mw-page-title-main">Radiation</span> Waves or particles moving through space

In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes:

Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. The use of radiometric dating was first published in 1907 by Bertram Boltwood and is now the principal source of information about the absolute age of rocks and other geological features, including the age of fossilized life forms or the age of Earth itself, and can also be used to date a wide range of natural and man-made materials.

A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nuclide the decay rate, and thus the half-life (t1/2) for that collection, can be calculated from their measured decay constants. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.

<span class="mw-page-title-main">Electron capture</span> Process in which a proton-rich nuclide absorbs an inner atomic electron

Electron capture is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. This process thereby changes a nuclear proton to a neutron and simultaneously causes the emission of an electron neutrino.

<span class="mw-page-title-main">Radioactive decay</span> Emissions from unstable atomic nuclei

Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetism and nuclear force.

<span class="mw-page-title-main">Positron emission</span> Type of radioactive decay

Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino. Positron emission is mediated by the weak force. The positron is a type of beta particle (β+), the other beta particle being the electron (β) emitted from the β decay of a nucleus.

A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide. By virtue of its radioactive decay, it can be used to explore the mechanism of chemical reactions by tracing the path that the radioisotope follows from reactants to products. Radiolabeling or radiotracing is thus the radioactive form of isotopic labeling. In biological contexts, experiments that use radioisotope tracers are sometimes called radioisotope feeding experiments.

Potassium–argon dating, abbreviated K–Ar dating, is a radiometric dating method used in geochronology and archaeology. It is based on measurement of the product of the radioactive decay of an isotope of potassium (K) into argon (Ar). Potassium is a common element found in many materials, such as feldspars, micas, clay minerals, tephra, and evaporites. In these materials, the decay product 40
Ar
is able to escape the liquid (molten) rock but starts to accumulate when the rock solidifies (recrystallizes). The amount of argon sublimation that occurs is a function of the purity of the sample, the composition of the mother material, and a number of other factors. These factors introduce error limits on the upper and lower bounds of dating, so that the final determination of age is reliant on the environmental factors during formation, melting, and exposure to decreased pressure or open air. Time since recrystallization is calculated by measuring the ratio of the amount of 40
Ar
accumulated to the amount of 40
K
remaining. The long half-life of 40
K
allows the method to be used to calculate the absolute age of samples older than a few thousand years.

Argon–argondating is a radiometric dating method invented to supersede potassium–argon (K/Ar) dating in accuracy. The older method required splitting samples into two for separate potassium and argon measurements, while the newer method requires only one rock fragment or mineral grain and uses a single measurement of argon isotopes. 40Ar/39Ar dating relies on neutron irradiation from a nuclear reactor to convert a stable form of potassium (39K) into the radioactive 39Ar. As long as a standard of known age is co-irradiated with unknown samples, it is possible to use a single measurement of argon isotopes to calculate the 40K/40Ar* ratio, and thus to calculate the age of the unknown sample. 40Ar* refers to the radiogenic 40Ar, i.e. the 40Ar produced from radioactive decay of 40K. 40Ar* does not include atmospheric argon adsorbed to the surface or inherited through diffusion and its calculated value is derived from measuring the 36Ar and assuming that 40Ar is found in a constant ratio to 36Ar in atmospheric gases.

Potassium has 26 known isotopes from 31
K
to 57
K
, with the exception of still-unknown 32
K
, as well as an unconfirmed report of 59
K
. Three of those isotopes occur naturally: the two stable forms 39
K
(93.3%) and 41
K
(6.7%), and a very long-lived radioisotope 40
K
(0.012%)

Argon (18Ar) has 26 known isotopes, from 29Ar to 54Ar and 1 isomer (32mAr), of which three are stable. On the Earth, 40Ar makes up 99.6% of natural argon. The longest-lived radioactive isotopes are 39Ar with a half-life of 268 years, 42Ar with a half-life of 32.9 years, and 37Ar with a half-life of 35.04 days. All other isotopes have half-lives of less than two hours, and most less than one minute. The least stable is 29Ar with a half-life of approximately 4×10−20 seconds.

The formation evaluation gamma ray log is a record of the variation with depth of the natural radioactivity of earth materials in a wellbore. Measurement of natural emission of gamma rays in oil and gas wells are useful because shales and sandstones typically have different gamma ray levels. Shales and clays are responsible for most natural radioactivity, so gamma ray log often is a good indicator of such rocks. In addition, the log is also used for correlation between wells, for depth correlation between open and cased holes, and for depth correlation between logging runs.

<span class="mw-page-title-main">Gamma ray</span> Energetic electromagnetic radiation arising from radioactive decay of atomic nuclei

A gamma ray, also known as gamma radiation (symbol γ or ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3×1019 Hz), each gamma ray imparts the highest photon energy of any form of electromagnetic radiation. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.

<span class="mw-page-title-main">Thermochronology</span> Study of the thermal evolution of a region of a planet

Thermochronology is the study of the thermal evolution of a region of a planet. Thermochronologists use radiometric dating along with the closure temperatures that represent the temperature of the mineral being studied at the time given by the date recorded to understand the thermal history of a specific rock, mineral, or geologic unit. It is a subfield within geology, and is closely associated with geochronology.

<span class="mw-page-title-main">Primordial nuclide</span> Nuclides predating the Earths formation (found on Earth)

In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the interstellar medium from which the solar system was formed, and were formed in, or after, the Big Bang, by nucleosynthesis in stars and supernovae followed by mass ejection, by cosmic ray spallation, and potentially from other processes. They are the stable nuclides plus the long-lived fraction of radionuclides surviving in the primordial solar nebula through planet accretion until the present; 286 such nuclides are known.

<span class="mw-page-title-main">Banana equivalent dose</span> Informal measurement of ionizing radiation exposure

Banana equivalent dose (BED) is an informal unit of measurement of ionizing radiation exposure, intended as a general educational example to compare a dose of radioactivity to the dose one is exposed to by eating one average-sized banana. Bananas contain naturally occurring radioactive isotopes, particularly potassium-40 (40K), one of several naturally occurring isotopes of potassium. One BED is often correlated to 10−7 sievert ; however, in practice, this dose is not cumulative, as the potassium in foods is excreted in urine to maintain homeostasis. The BED is only meant as an educational exercise and is not a formally adopted dose measurement.

<span class="mw-page-title-main">Radiogenic nuclide</span>

A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive or stable.

A geoneutrino is a neutrino or antineutrino emitted in decay of radionuclide naturally occurring in the Earth. Neutrinos, the lightest of the known subatomic particles, lack measurable electromagnetic properties and interact only via the weak nuclear force when ignoring gravity. Matter is virtually transparent to neutrinos and consequently they travel, unimpeded, at near light speed through the Earth from their point of emission. Collectively, geoneutrinos carry integrated information about the abundances of their radioactive sources inside the Earth. A major objective of the emerging field of neutrino geophysics involves extracting geologically useful information from geoneutrino measurements. Analysts from the Borexino collaboration have been able to get to 53 events of neutrinos originating from the interior of the Earth.

References

  1. Engelkemeir, D. W.; Flynn, K. F.; Glendenin, L. E. (1962). "Positron Emission in the Decay of K40". Physical Review . 126 (5): 1818. Bibcode:1962PhRv..126.1818E. doi:10.1103/PhysRev.126.1818.
  2. Wohlers, A.; Wood, B. J. (2015). "A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd". Nature . 520 (7547): 337–340. Bibcode:2015Natur.520..337W. doi:10.1038/nature14350. PMC   4413371 . PMID   25877203.
  3. Murthy, V. Rama; Van Westrenen, Wim; Fei, Yingwei (2003). "Experimental evidence that potassium is a substantial radioactive heat source in planetary cores". Nature. 423 (6936): 163–5. Bibcode:2003Natur.423..163M. doi:10.1038/nature01560. PMID   12736683. S2CID   4430068.
  4. "Radioactive Human Body". Harvard Natural Sciences Lecture Demonstrations.
  5. Connor, Nick. "What is Potassium-40 – Characteristics – Half-life – Definition". Radiation Dosimetry.
  6. Bin Samat, S.; Green, S.; Beddoe, A. H. (1997). "The 40K activity of one gram of potassium". Physics in Medicine and Biology . 42 (2): 407–13. Bibcode:1997PMB....42..407S. doi:10.1088/0031-9155/42/2/012. PMID   9044422. S2CID   250778838.
  7. Nick Connor (14 December 2019). "What is Banana Equivalent Dose – BED – Definition". Radiation Dosimetry.
Lighter:
potassium-39
Potassium-40 is an
isotope of potassium
Heavier:
potassium-41
Decay product of:
Decay chain
of potassium-40
Decays to:
argon-40, calcium-40, Stable