Prehnite

Last updated
Prehnite
Prehnite - Southbury, Connecticut, USA.jpg
General
Category Silicate mineral
Formula
(repeating unit)
Ca2Al(AlSi3O10)(OH)2
IMA symbol Prh [1]
Strunz classification 9.DP.20
(Inosilicate transitional to phyllosilicate)
Dana classification72.1.3.1
(Phyllosilicate)
Crystal system Orthorhombic
Crystal class Pyramidal (mm2)
(same H-M symbol)
Space group P2cm
Identification
ColorColorless to gray to yellow, yellow-green or white
Crystal habit Globular, reniform to stalactitic
Twinning Fine lamellar
Cleavage Distinct on [001]
Tenacity Brittle
Mohs scale hardness6–6.5
Luster Vitreous to pearly
Streak White
Diaphaneity Semi-transparent to translucent
Specific gravity 2.8–2.95
Optical propertiesBiaxial (+)
Refractive index nα = 1.611 – 1.632
nβ = 1.615 – 1.642
nγ = 1.632 – 1.665
Birefringence δ = 0.021 – 0.033
Dispersion weak r > v
Ultraviolet fluorescence Fluorescent, short UV=blue white mild peach, long UV=yellow
References [2] [3] [4] [5] [6]

Prehnite is an inosilicate of calcium and aluminium with the formula: Ca2Al(AlSi3O10)(OH)2 with limited Fe3+ substitutes for aluminium in the structure. [7] Prehnite crystallizes in the orthorhombic crystal system, [7] and most often forms as stalactitic, botryoidal, reniform or globular aggregates, [8] with only just the crests of small crystals showing any faces, which are almost always curved or composite. Very rarely will it form distinct, well-individualized crystals showing a square-like cross-section, including those found at the Jeffrey Mine in Asbestos, Quebec, Canada. Prehnite is brittle with an uneven fracture and a vitreous to pearly luster. Its hardness is 6.5, its specific gravity is 2.80–2.95 and its color varies from light green to yellow, but also colorless, [8] blue, pink or white. In April 2000, rare orange prehnite was discovered in the Kalahari Manganese Fields, South Africa. Prehnite is mostly translucent, and rarely transparent.

Contents

Though not a zeolite, prehnite is found associated with minerals such as datolite, calcite, apophyllite, stilbite, laumontite, and heulandite in veins and cavities of basaltic rocks, sometimes in granites, syenites, or gneisses. It is an indicator mineral of the prehnite-pumpellyite metamorphic facies.

It was first described in 1788 for an occurrence in the Karoo dolerites of Cradock, Eastern Cape Province, South Africa. [4] It was named for Colonel Hendrik Von Prehn (1733–1785), commander of the military forces of the Dutch colony at the Cape of Good Hope from 1768 to 1780. [4]

It is used as a gemstone. [9]

Extensive deposits of gem-quality prehnite occur in the basalt tableland surrounding Wave Hill Station in the central Northern Territory, of Australia. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Analcime</span> Tectosilicate mineral

Analcime (; from Ancient Greek ἀνάλκιμος (análkimos) 'not strong') or analcite is a white, gray, or colorless tectosilicate mineral. Analcime consists of hydrated sodium aluminium silicate in cubic crystalline form. Its chemical formula is NaAlSi2O6·H2O. Minor amounts of potassium and calcium substitute for sodium. A silver-bearing synthetic variety also exists (Ag-analcite). Analcime is usually classified as a zeolite mineral, but structurally and chemically it is more similar to the feldspathoids. Analcime is not classified as an isometric crystal, as although the crystal structure appears to be isometric, it is usually off only by a fraction of an angle. However, there are truly isometric samples of the mineral, which makes its classification even more difficult. Due to the differences between the samples being too slight, there's no merit from having multiple species names, so as a result analcime is a common example for minerals occurring in multiple crystal systems and space groups. It was first described by French geologist Déodat de Dolomieu, who called it zéolithe dure, meaning hard zeolite. It was found in lava in Cyclops, Italy. The mineral is IMA approved, and had been grandfathered, meaning the name analcime is believed to refer to a valid species til this day.

<span class="mw-page-title-main">Titanite</span> Nesosilicate mineral

Titanite, or sphene (from Ancient Greek σφηνώ (sphēnṓ) 'wedge'), is a calcium titanium nesosilicate mineral, CaTiSiO5. Trace impurities of iron and aluminium are typically present. Also commonly present are rare earth metals including cerium and yttrium; calcium may be partly replaced by thorium.

<span class="mw-page-title-main">Celestine (mineral)</span> Sulfate mineral

Celestine (the IMA-accepted name) or celestite is a mineral consisting of strontium sulfate (SrSO4). The mineral is named for its occasional delicate blue color. Celestine and the carbonate mineral strontianite are the principal sources of the element strontium, commonly used in fireworks and in various metal alloys.

<span class="mw-page-title-main">Axinite</span>

Axinite is a brown to violet-brown, or reddish-brown bladed group of minerals composed of calcium aluminium boro-silicate, (Ca,Fe,Mn)3Al2BO3Si4O12OH. Axinite is pyroelectric and piezoelectric.

<span class="mw-page-title-main">Rhodochrosite</span> Mineral of manganese carbonate

Rhodochrosite is a manganese carbonate mineral with chemical composition MnCO3. In its pure form (rare), it is typically a rose-red colour, but it can also be shades of pink to pale brown. It streaks white, and its Mohs hardness varies between 3.5 and 4.5. Its specific gravity is between 3.45 and 3.6. The crystal system of rhodochrosite is trigonal, with a lattice structure and cleavage in the carbonate rhombohedral system. The carbonate ions (CO2−
3
) are arranged in a triangular planar configuration, and the manganese ions (Mn2–) are surrounded by six oxygen ions in an octahedral arrangement. The MnO6 octahedra and CO3 triangles are linked together to form a three-dimensional structure. Crystal twinning is often present. It can be confused with the manganese silicate rhodonite, but is distinctly softer. Rhodochrosite is formed by the oxidation of manganese ore, and is found in South Africa, China, and the Americas. It is one of the national symbols of Argentina.

<span class="mw-page-title-main">Epidote</span> Sorosilicate mineral

Epidote is a calcium aluminium iron sorosilicate mineral.

<span class="mw-page-title-main">Stilbite</span>

Stilbite is the name of a series of tectosilicate minerals of the zeolite group. Prior to 1997, stilbite was recognized as a mineral species, but a reclassification in 1997 by the International Mineralogical Association changed it to a series name, with the mineral species being named:

<span class="mw-page-title-main">Chabazite</span> Tectosilicate mineral of the zeolite group

Chabazite is a tectosilicate mineral of the zeolite group, closely related to gmelinite, with the chemical formula (Ca,K
2
,Na
2
,Mg)Al
2
Si
4
O
12
•6H
2
O
. Recognized varieties include Chabazite-Ca, Chabazite-K, Chabazite-Na, and Chabazite-Sr, depending on the prominence of the indicated cation.

<span class="mw-page-title-main">Pezzottaite</span> Mineral species

Pezzottaite, marketed under the name raspberyl or raspberry beryl, is a mineral species first recognized by the International Mineralogical Association in September 2003. Pezzottaite is a caesium analogue of beryl, a silicate of caesium, beryllium, lithium and aluminium, with the chemical formula Cs(Be2Li)Al2Si6O18. Named after Italian geologist and mineralogist Federico Pezzotta, pezzottaite was first thought to be either red beryl or a new variety of beryl ("caesium beryl"); unlike actual beryl, however, pezzottaite contains lithium and crystallizes in the trigonal crystal system rather than the hexagonal system.

<span class="mw-page-title-main">Vesuvianite</span> Silicate mineral

Vesuvianite, also known as idocrase, is a green, brown, yellow, or blue silicate mineral. Vesuvianite occurs as tetragonal crystals in skarn deposits and limestones that have been subjected to contact metamorphism. It was first discovered within included blocks or adjacent to lavas on Mount Vesuvius, hence its name. Attractive-looking crystals are sometimes cut as gemstones. Localities which have yielded fine crystallized specimens include Mount Vesuvius and the Ala Valley near Turin, Piedmont.

<span class="mw-page-title-main">Clinohumite</span> Nesosilicate mineral

Clinohumite is an uncommon member of the humite group, a magnesium silicate according to the chemical formula (Mg, Fe)9(SiO4)4(F,OH)2. The formula can be thought of as four olivine (Mg2SiO4), plus one brucite (Mg(OH)2). Indeed, the mineral is essentially a hydrated olivine and occurs in altered ultramafic rocks and carbonatites. Most commonly found as tiny indistinct grains, large euhedral clinohumite crystals are sought by collectors and occasionally fashioned into bright, yellow-orange gemstones. Only two sources of gem-quality material are known: the Pamir Mountains of Tajikistan, and the Taymyr region of northern Siberia. It is one of two humite group minerals that have been cut into gems, the other being the much more common chondrodite.

<span class="mw-page-title-main">Grossular</span> Garnet, nesosilicate mineral

Grossular is a calcium-aluminium species of the garnet group of minerals. It has the chemical formula of Ca3Al2(SiO4)3 but the calcium may, in part, be replaced by ferrous iron and the aluminium by ferric iron. The name grossular is derived from the botanical name for the gooseberry, grossularia, in reference to the green garnet of this composition that is found in Siberia. Other shades include cinnamon brown (cinnamon stone variety), red, and yellow. Grossular is a gemstone.

<span class="mw-page-title-main">Andradite</span> Nesosilicate mineral species of garnet

Andradite is a mineral species of the garnet group. It is a nesosilicate, with formula Ca3Fe2Si3O12.

<span class="mw-page-title-main">Datolite</span>

Datolite is a calcium boron hydroxide nesosilicate, CaBSiO4(OH). It was first observed by Jens Esmark in 1806, and named by him from δατεῖσθαι, "to divide," and λίθος, "stone," in allusion to the granular structure of the massive mineral.

<span class="mw-page-title-main">Pectolite</span> Silicate mineral

Pectolite is a white to gray mineral, NaCa2Si3O8(OH), sodium calcium hydroxide inosilicate. It crystallizes in the triclinic system typically occurring in radiated or fibrous crystalline masses. It has a Mohs hardness of 4.5 to 5 and a specific gravity of 2.7 to 2.9. The gemstone variety, larimar, is a pale to sky blue.

<span class="mw-page-title-main">Celadonite</span>

Celadonite is a mica group mineral, a phyllosilicate of potassium, iron in both oxidation states, aluminium and hydroxide with formula K(Mg,Fe2+
)(Fe3+
,Al)[Si
4
O
10
](OH)
2
.

<span class="mw-page-title-main">Mesolite</span> Zeolite mineral

Mesolite is a tectosilicate mineral with formula Na2Ca2(Al2Si3O10)3·8H2O. It is a member of the zeolite group and is closely related to natrolite which it also resembles in appearance.

<span class="mw-page-title-main">Pumpellyite</span> Pumpellyite series

Pumpellyite is a group of closely related sorosilicate minerals:

<span class="mw-page-title-main">Clinohedrite</span>

Clinohedrite is a rare silicate mineral. Its chemical composition is a hydrous calcium-zinc silicate; CaZn(SiO4)·H2O. It crystallizes in the monoclinic system and typically occurs as veinlets and fracture coatings. It is commonly colorless, white to pale amethyst in color. It has perfect cleavage and the crystalline habit has a brilliant luster. It has a Mohs hardness of 5.5 and a specific gravity of 3.28–3.33.

<span class="mw-page-title-main">Aliettite</span> Mineral

Aliettite is a complex phyllosilicate mineral of the smectite group with a formula of (Ca0.2Mg6(Si,Al)8O20(OH)4·4H2O) or [Mg3Si4O10(OH)2](Ca0.5,Na)0.33(Al,Mg,Fe2+)23(Si,Al)4O10(OH)2·n(H2O).

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. "Mineralienatlas - Fossilienatlas". www.mineralienatlas.de.
  3. "Prehnite Mineral Data". webmineral.com.
  4. 1 2 3 http://www.mindat.org/min-3277.html Mindat
  5. Hurlbut, Cornelius S.; Klein, Cornelis, 1985, Manual of Mineralogy, 20th ed., ISBN   0-471-80580-7
  6. http://rruff.geo.arizona.edu/doclib/hom/prehnite.pdf Handbook of Mineralogy
  7. 1 2 William Alexander Deer; Robert Andrew Howie; J. Zussman (1978). Rock Forming Minerals: Layered Silicates Excluding Micas and Clay Minerals. Vol. 3B. Geological Society of London. p. 271. ISBN   9781862392595.
  8. 1 2 Report Upon the Condition and Progress of the U.S. National Museum During the Year Ending June 30, 1900. United States National Museum. U.S. Government Printing Office. 1902. p. 520.
  9. Tables of Gemstone Identification By Roger Dedeyne, Ivo Quintens, p. 131
  10. "Wave Hill". History; Discoveries. fossicking.nt.gov.au. 2016. Retrieved 2019-07-11.