SERAC1

Last updated
SERAC1
Identifiers
Aliases SERAC1 , serine active site containing 1
External IDs OMIM: 614725 MGI: 2447813 HomoloGene: 41900 GeneCards: SERAC1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_032861

NM_001033127
NM_001111017
NM_177311
NM_001360148

RefSeq (protein)

NP_116250

NP_001104487
NP_796285
NP_001347077

Location (UCSC) Chr 6: 158.11 – 158.17 Mb Chr 17: 6.09 – 6.13 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Serine active site-containing protein 1, or Protein SERAC1 is a protein in humans that is encoded by the SERAC1 gene. [5] [6] [7] The protein encoded by this gene is a phosphatidylglycerol remodeling protein found at the interface of mitochondria and endoplasmic reticula, where it mediates phospholipid exchange. The encoded protein plays a major role in mitochondrial function and intracellular cholesterol trafficking. Defects in this gene are a cause of 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome (MEGDEL). Two transcript variants, one protein-coding and the other non-protein coding, have been found for this gene. [5]

Contents

Structure

The SERAC1 gene is located on the q arm of chromosome 6 at position 25.3 and it spans 58,776 base pairs. [5] The SERAC1 gene produces an 18.7 kDa protein composed of 162 amino acids. [8] [9] The structure of the encoded protein contains a C-terminal serine-lipase/esterase domain containing the consensus lipase motif GxSxG, and an N-terminal signal sequence. [10]

Function

The SERAC1 gene encodes for a protein necessary for phosphatidylglycerol remodeling. phosphatidylglycerol remodeling is a process of altering or remodeling a particular phospholipid called phosphatidylglycerol. Phosphatidylglycerol helps make cardiolipin, an important ingredient that surrounds the Inner mitochondrial membrane. Cardiolipin is responsible for converting energy acquired from food to a cell-usable form and required for proper mitochondrial function. Because of cardiolipin, the remodeling process of phosphatidylglycerol is essential for mitochondrial function and intracellular cholesterol trafficking. [11] [6] [7]

Additionally, SERAC1 is involved in the movement of cholesterol, which are fatty, waxy substances within cells. Cholesterol is a component of cell structure, and produces hormones and digestive acids. The protein may also be involved in the transacylation-acylation reaction to produce phosphatidylglycerol-36:1 and bis(monoacylglycerol)phosphate biosynthetic pathway. [11] [6] [7]

Clinical Significance

Mutations in the SERAC1 gene have been associated to impairment of both mitochondrial function and intracellular cholesterol trafficking. [10] Such mutations have been majorly associated withand Leigh syndrome and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome, known as MEGDEL syndrome. [12]

MEGDEL syndrome

SERAC1 mutations have been heavily associated with MGDEL syndrome. MGDEL syndrome (3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome) is an autosomal recessive disorder characterized by childhood onset of delayed psychomotor development or psychomotor regression, sensorineural deafness, spasticity or dystonia and increased excretion of 3-methylglutaconic acid. Brain imaging shows cerebral and cerebellar atrophy as well as lesions in the basal ganglia reminiscent of Leigh syndrome. Laboratory studies show increased serum lactate and alanine, mitochondrial oxidative phosphorylation defects, abnormal mitochondria, abnormal phosphatidylglycerol and cardiolipin profiles in fibroblasts, and abnormal accumulation of unesterified cholesterol within cells. [7] [6]

The SERAC1 gene mutations that cause this condition reduce the amount of SERAC1 protein that is produced or lead to production of a protein with little or no function. As a result, phosphatidylglycerol remodeling is impaired, which likely alters the composition of cardiolipin. Researchers speculate that the abnormal cardiolipin affects mitochondrial function, reducing cellular energy production and leading to the neurological and hearing problems characteristic of MEGDEL syndrome. It is unclear how SERAC1 gene mutations lead to abnormal release of 3-methylglutaconic acid in the urine. [11] [5]

A c.202C>T mutation in this gene has been found in a patient suffering from 3-methylglutaconic aciduria, and related symptoms. [13] Two patients with Homozygous G>C transversions in the SERAC1 gene have been found to show symptoms of MEGDEL syndrome with deafness, encephalopathy, and Leigh-like syndrome. [10] Another patient with a homozygous 4 base pair deletion (1167delTCAG) showed symptoms of recurrent infections, failure to thrive, mental retardation, spasticity and extrapyramidal symptoms. [14]

Leigh syndrome

Leigh syndrome is an early-onset progressive neurodegenerative disorder characterized by the presence of focal, bilateral lesions in one or more areas of the central nervous system including the brainstem, thalamus, basal ganglia, cerebellum and spinal cord. Clinical features depend on which areas of the central nervous system are involved and include subacute onset of psychomotor retardation, hypotonia, ataxia, muscle weakness, vision loss, eye movement abnormalities, seizures, and dysphagia. [15]

Interactions

SERAC1 has been shown to have Protein-protein interactions with the following. [16] [6]

Related Research Articles

Barth syndrome (BTHS) is a rare but serious X-linked genetic disorder, caused by changes in phospholipid structure and metabolism. It may affect multiple body systems, and is potentially fatal. The syndrome is diagnosed almost exclusively in males.

Cardiolipin is an important component of the inner mitochondrial membrane, where it constitutes about 20% of the total lipid composition. It can also be found in the membranes of most bacteria. The name "cardiolipin" is derived from the fact that it was first found in animal hearts. It was first isolated from the beef heart in the early 1940s by Mary C. Pangborn. In mammalian cells, but also in plant cells, cardiolipin (CL) is found almost exclusively in the inner mitochondrial membrane, where it is essential for the optimal function of numerous enzymes that are involved in mitochondrial energy metabolism.

<span class="mw-page-title-main">Tafazzin</span> Protein found in humans

Tafazzin is a protein that in humans is encoded by the TAFAZZIN gene. Tafazzin is highly expressed in cardiac and skeletal muscle, and functions as a phospholipid-lysophospholipid transacylase. It catalyzes remodeling of immature cardiolipin to its mature composition containing a predominance of tetralinoleoyl moieties. Several different isoforms of the tafazzin protein are produced from the TAFAZZIN gene. A long form and a short form of each of these isoforms is produced; the short form lacks a hydrophobic leader sequence and may exist as a cytoplasmic protein rather than being membrane-bound. Other alternatively spliced transcripts have been described but the full-length nature of all these transcripts is not known. Most isoforms are found in all tissues, but some are found only in certain types of cells. Mutations in the TAFAZZIN gene have been associated with mitochondrial deficiency, Barth syndrome, dilated cardiomyopathy (DCM), hypertrophic DCM, endocardial fibroelastosis, left ventricular noncompaction (LVNC), breast cancer, papillary thyroid carcinoma, non-small cell lung cancer, glioma, gastric cancer, thyroid neoplasms, and rectal cancer.

<span class="mw-page-title-main">3-Methylglutaconic aciduria</span> Medical condition

3-Methylglutaconic aciduria (MGA) is any of at least five metabolic disorders that impair the body's ability to make energy in the mitochondria. As a result of this impairment, 3-methylglutaconic acid and 3-methylglutaric acid build up and can be detected in the urine.

<span class="mw-page-title-main">MT-ATP6</span> Mitochondrial protein-coding gene whose product is involved in ATP synthesis

MT-ATP6 is a mitochondrial gene with the full name 'mitochondrially encoded ATP synthase membrane subunit 6' that encodes the ATP synthase Fo subunit 6. This subunit belongs to the Fo complex of the large, transmembrane F-type ATP synthase. This enzyme, which is also known as complex V, is responsible for the final step of oxidative phosphorylation in the electron transport chain. Specifically, one segment of ATP synthase allows positively charged ions, called protons, to flow across a specialized membrane inside mitochondria. Another segment of the enzyme uses the energy created by this proton flow to convert a molecule called adenosine diphosphate (ADP) to ATP. Mutations in the MT-ATP6 gene have been found in approximately 10 to 20 percent of people with Leigh syndrome.

<span class="mw-page-title-main">PLA2G6</span> Protein-coding gene in the species Homo sapiens

85 kDa calcium-independent phospholipase A2, also known as 85/88 kDa calcium-independent phospholipase A2, Group VI phospholipase A2, Intracellular membrane-associated calcium-independent phospholipase A2 beta, or Patatin-like phospholipase domain-containing protein 9 is an enzyme that in humans is encoded by the PLA2G6 gene.

<span class="mw-page-title-main">NDUFS8</span> Protein-coding gene in the species Homo sapiens

NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial also known as NADH-ubiquinone oxidoreductase 23 kDa subunit, Complex I-23kD (CI-23kD), or TYKY subunit is an enzyme that in humans is encoded by the NDUFS8 gene. The NDUFS8 protein is a subunit of NADH dehydrogenase (ubiquinone) also known as Complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in this gene have been associated with Leigh syndrome.

<span class="mw-page-title-main">OPA3</span> Protein-coding gene in the species Homo sapiens

Optic atrophy 3 protein is a protein that in humans is encoded by the OPA3 gene.

<span class="mw-page-title-main">NDUFS7</span> Protein-coding gene in the species Homo sapiens

NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial, also knowns as NADH-ubiquinone oxidoreductase 20 kDa subunit, Complex I-20kD (CI-20kD), or PSST subunit is an enzyme that in humans is encoded by the NDUFS7 gene. The NDUFS7 protein is a subunit of NADH dehydrogenase (ubiquinone) also known as Complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain.

<span class="mw-page-title-main">FOXRED1</span> Protein-coding gene in the species Homo sapiens

FAD-dependent oxidoreductase domain-containing protein 1 (FOXRED1), also known as H17, or FP634 is an enzyme that in humans is encoded by the FOXRED1 gene. FOXRED1 is an oxidoreductase and complex I-specific molecular chaperone involved in the assembly and stabilization of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in FOXRED1 have been associated with Leigh syndrome and infantile-onset mitochondrial encephalopathy.

<span class="mw-page-title-main">DNAJC19</span> Protein-coding gene in the species Homo sapiens

Mitochondrial import inner membrane translocase subunit TIM14 is an enzyme that in humans is encoded by the DNAJC19 gene on chromosome 3. TIM14 belongs to the DnaJ family, which has been involved in Hsp40/Hsp70 chaperone systems. As a mitochondrial chaperone, TIM14 functions as part of the TIM23 complex import motor to facilitate the import of nuclear-encoded proteins into the mitochondria. TIM14 also complexes with prohibitin complexes to regulate mitochondrial morphogenesis, and has been implicated in dilated cardiomyopathy with ataxia.

<span class="mw-page-title-main">CLPB</span> Protein-coding gene in the species Homo sapiens

Caseinolytic peptidase B protein homolog (CLPB), also known as Skd3, is a mitochondrial AAA ATPase chaperone that in humans is encoded by the gene CLPB, which encodes an adenosine triphosphate-(ATP) dependent chaperone. Skd3 is localized in mitochondria and widely expressed in human tissues. High expression in adult brain and low expression in granulocyte is found. It is a potent protein disaggregase that chaperones the mitochondrial intermembrane space. Mutations in the CLPB gene could cause autosomal recessive metabolic disorder with intellectual disability/developmental delay, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria. Recently, heterozygous, dominant negative mutations in CLPB have been identified as a cause of severe congenital neutropenia (SCN).

<span class="mw-page-title-main">TIMM50</span> Protein-coding gene in the species Homo sapiens

Mitochondrial import inner membrane translocase subunit TIM50 is a protein that in humans is encoded by the TIMM50 gene. Tim50 is a subunit of the Tim23 translocase complex in the inner mitochondrial membrane. Mutations in TIMM50 can lead to epilepsy, severe intellectual disability, and 3-methylglutaconic aciduria. TIMM50 expression is increased in breast cancer cells and decreased in hypertrophic hearts.

<span class="mw-page-title-main">COX15</span> Protein-coding gene in the species Homo sapiens

Cytochrome c oxidase assembly protein COX15 homolog (COX15), also known as heme A synthase, is a protein that in humans is encoded by the COX15 gene. This protein localizes to the inner mitochondrial membrane and involved in heme A biosynthesis. COX15 is also part of a three-component mono-oxygenase that catalyses the hydroxylation of the methyl group at position eight of the protoheme molecule. Mutations in this gene has been reported in patients with hypertrophic cardiomyopathy as well as Leigh syndrome, and characterized by delayed onset of symptoms, hypotonia, feeding difficulties, failure to thrive, motor regression, and brain stem signs.

<span class="mw-page-title-main">SLC25A22</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 25 member 22 is a protein that in humans is encoded by the SLC25A22 gene. This gene encodes a mitochondrial glutamate carrier. Mutations in this gene are associated with early infantile epileptic encephalopathy. Expression of this gene is increased in colorectal tumor cells.

<span class="mw-page-title-main">C19orf70</span> Protein-coding gene in the species Homo sapiens

Chromosome 19 open reading frame 70, also known as QIL1, MICOS complex subunit MIC13 (MIC13) or Protein P117 is a protein that in humans is encoded by the C19orf70 gene.

<span class="mw-page-title-main">UQCC3</span> Protein-coding gene in the species Homo sapiens

Ubiquinol-cytochrome c reductase complex assembly factor 3 is a protein that in humans is encoded by the UQCC3 gene. Located in mitochondria, this protein is involved in the assembly of mitochondrial Complex III, stabilizing supercomplexes containing Complex III. Mutations in the UQCC3 gene cause Complex III deficiency with symptoms of hypoglycemia, hypotonia, lactic acidosis, and developmental delays. This protein plays an important role as an antiviral factor, bolstering the ability of cells to inhibit viral replication, independent of interferon production. The UQCC3 protein can be cleaved by OMA1 metalloprotease during mitochondrial depolarization, targeting the cell for apoptosis. Depletion of this protein alters cardiolipin composition, causing cellular and mitochondrial defects.

<span class="mw-page-title-main">PET100</span> Protein-coding gene in the species Homo sapiens

PET100 homolog is a protein that in humans is encoded by the PET100 gene. Mitochondrial complex IV, or cytochrome c oxidase, is a large transmembrane protein complex that is part of the respiratory electron transport chain of mitochondria. The small protein encoded by the PET100 gene plays a role in the biogenesis of mitochondrial complex IV. This protein localizes to the inner mitochondrial membrane and is exposed to the intermembrane space. Mutations in this gene are associated with mitochondrial complex IV deficiency. This gene has a pseudogene on chromosome 3. Alternative splicing results in multiple transcript variants.

<span class="mw-page-title-main">TMEM70</span> Protein-coding gene in the species Homo sapiens

Transmembrane protein 70 is a protein that in humans is encoded by the TMEM70 gene. It is a transmembrane protein located in the mitochondrial inner membrane involved in the assembly of the F1 and Fo structural subunits of ATP synthase. Mutations in this gene have been associated with neonatal mitochondrial encephalo-cardiomyopathy due to ATP synthase deficiency, causing a wide variety of symptoms including 3-methylglutaconic aciduria, lactic acidosis, mitochondrial myopathy, and cardiomyopathy.

<span class="mw-page-title-main">SLC25A46</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 25 member 46 is a protein that in humans is encoded by the SLC25A46 gene. This protein is a member of the SLC25 mitochondrial solute carrier family. It is a transmembrane protein located in the mitochondrial outer membrane involved in lipid transfer from the endoplasmic reticulum (ER) to mitochondria. Mutations in this gene result in neuropathy and optic atrophy.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000122335 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000015659 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 "Entrez Gene: Serine active site containing 1" . Retrieved 2012-07-24.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. 1 2 3 4 5 "Protein SERAC1" . Retrieved 2018-08-27. Creative Commons by small.svg  This article incorporates text available under the CC BY 4.0 license.
  7. 1 2 3 4 "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC   5210571 . PMID   27899622.
  8. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC   4076475 . PMID   23965338.
  9. "Protein SERAC1". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). Archived from the original on 2018-08-28. Retrieved 2018-08-28.
  10. 1 2 3 Wortmann SB, Vaz FM, Gardeitchik T, Vissers LE, Renkema GH, Schuurs-Hoeijmakers JH, Kulik W, Lammens M, Christin C, Kluijtmans LA, Rodenburg RJ, Nijtmans LG, Grünewald A, Klein C, Gerhold JM, Kozicz T, van Hasselt PM, Harakalova M, Kloosterman W, Barić I, Pronicka E, Ucar SK, Naess K, Singhal KK, Krumina Z, Gilissen C, van Bokhoven H, Veltman JA, Smeitink JA, Lefeber DJ, Spelbrink JN, Wevers RA, Morava E, de Brouwer AP (June 2012). "Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness". Nature Genetics. 44 (7): 797–802. doi:10.1038/ng.2325. PMID   22683713. S2CID   2447771.
  11. 1 2 3 "SERAC1". Genetics Home Reference. NCBI.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  12. Lumish HS, Yang Y, Xia F, Wilson A, Chung WK (2014). "The Expanding MEGDEL Phenotype: Optic Nerve Atrophy, Microcephaly, and Myoclonic Epilepsy in a Child with SERAC1 Mutations". JIMD Reports. 16: 75–9. doi:10.1007/8904_2014_322. ISBN   978-3-662-44586-0. PMC   4221303 . PMID   24997715.
  13. Tort F, García-Silva MT, Ferrer-Cortès X, Navarro-Sastre A, Garcia-Villoria J, Coll MJ, Vidal E, Jiménez-Almazán J, Dopazo J, Briones P, Elpeleg O, Ribes A (2013). "Exome sequencing identifies a new mutation in SERAC1 in a patient with 3-methylglutaconic aciduria". Molecular Genetics and Metabolism. 110 (1–2): 73–7. doi:10.1016/j.ymgme.2013.04.021. PMID   23707711.
  14. Wortmann S, Rodenburg RJ, Huizing M, Loupatty FJ, de Koning T, Kluijtmans LA, Engelke U, Wevers R, Smeitink JA, Morava E (May 2006). "Association of 3-methylglutaconic aciduria with sensori-neural deafness, encephalopathy, and Leigh-like syndrome (MEGDEL association) in four patients with a disorder of the oxidative phosphorylation". Molecular Genetics and Metabolism. 88 (1): 47–52. doi:10.1016/j.ymgme.2006.01.013. PMID   16527507.
  15. "Leigh syndrome". www.uniprot.org.
  16. Mick DU, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D, Lorenzi I, Sasarman F, Weraarpachai W, Shoubridge EA, Warscheid B, Rehling P (December 2012). "MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation". Cell. 151 (7): 1528–41. doi: 10.1016/j.cell.2012.11.053 . hdl: 11858/00-001M-0000-000E-DDDF-4 . PMID   23260140.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.