Skin (aeronautics)

Last updated

The skin of an aircraft is the outer surface which covers much of its wings and fuselage. [1] The most commonly used materials are aluminum and aluminium alloys with other metals, including zinc, magnesium and copper.

Contents

History

As the twentieth century progressed, aluminum became an essential metal in aircraft. The cylinder block of the engine that powered the Wright brothers’ plane at Kitty Hawk in 1903 was a one-piece casting in an aluminum alloy containing 8% copper; aluminum propeller blades appeared as early as 1907; and aluminum covers, seats, cowlings, cast brackets, and similar parts were common by the beginning of the First World War.

In 1916, L. Brequet designed a reconnaissance bomber that marked the initial use of aluminum in the working structure of an airplane. By war’s end, the Allies and Germany employed aluminum alloys for the structural framework of fuselage and wing assemblies. [2]

Alloys for airframe components

The aircraft airframe has been the most demanding application for aluminum alloys; to chronicle the development of the high-strength alloys is also to record the development of airframes. Duralumin, the first high-strength, heat treatable aluminum alloy, was employed initially for the framework of rigid airships, by Germany and the Allies during World War I. Duralumin was an aluminum-copper-magnesium alloy; it was originated in Germany and developed in the United States as Alloy 17S-T (2017-T4). It was utilized primarily as sheet and plate. Alloy 7075-T6 (70,000-psi yield strength), an Al-Zn-Mg-Cu alloy, was introduced in 1943. Since then, most aircraft structures have been specified in alloys of this type. The first aircraft designed in 7075-T6 was the Navy’s P2V patrol bomber. A higher-strength alloy in the same series, 7178-T6 (78,000-psi yield strength), was developed in 1951; it has not generally displaced 7075-T6, which has superior fracture toughness. Alloy 7178-T6 is used primarily in structural members where performance is critical under compressive loading.

Alloy 7079-T6 was introduced in the United States in 1954. In forged sections over 3 in. thick, it provides higher strength and greater transverse ductility than 7075-T6. It now is available in sheet, plate, extrusions, and forgings.

Alloy X7080-T7, with higher resistance to stress corrosion than 7079-T6, is being developed for thick parts. Because it is relatively insensitive to quenching rate, good strengths with low quenching stresses can be produced in thick sections.

Cladding of aluminum alloys was developed initially to increase the corrosion resistance of 2017-T4 sheet and thus to reduce aluminum aircraft maintenance requirements. The coating on 2017 sheet - and later on 2024-T3 - consisted of commercial-purity aluminum metallurgically bonded to one or both surfaces of the sheet.

Electrolytic protection, present under wet or moist conditions, is based on the appreciably higher electrode potential of commercial-purity aluminum compared to alloy 2017 or 2024 in the T3 or T4 temper. When 7075-T6 and other Al-Zn-Mg-Cu alloys appeared, an aluminum-zinc cladding alloy 7072 was developed to provide a relative electrode potential sufficient to protect the new strong alloys.

However, the high-performance aircraft designed since 1945 have made extensive use of skin structures machined from thick plate and extrusions, precluding the use of alclad exterior skins. Maintenance requirements increased as a result, and these stimulated research and development programs seeking higher-strength alloys with improved resistance to corrosion without cladding.

Aluminum alloy castings traditionally have been used in nonstructural airplane hardware, such as pulley brackets, quadrants, doublers, clips, ducts, and wave guides. They also have been employed extensively in complex valve bodies of hydraulic control systems. The philosophy of some aircraft manufacturers still is to specify castings only in places where failure of the part cannot cause loss of the airplane. Redundancy in cable and hydraulic control systems "permits" the use of castings.

Casting technology has made great advances in the last decade. Time-honored alloys such as 355 and 356 have been modified to produce higher levels of strength and ductility. New alloys such as 354, A356, A357, 359 and Tens 50 were developed for premium-strength castings. The high strength is accompanied by enhanced structural integrity and performance reliability.

Electric resistance spot and seam welding are used to join secondary structures, such as fairings, engine cowls, and doublers, to bulkheads and skins. Difficulties in quality control have resulted in low utilization of electric resistance welding for primary structure.

Ultrasonic welding offers some economic and quality-control advantages for production joining, particularly for thin sheet. However, the method has not yet been developed extensively in the aerospace industry.

Adhesive bonding is a common method of joining in both primary and secondary structures. Its selection is dependent on the design philosophy of the aircraft manufacturer. It has proven satisfactory in attaching stiffeners, such as hat sections to sheet, and face sheets to honeycomb cores. Also, adhesive bonding has withstood adverse exposures such as sea-water immersion and atmospheres.

Fusion welded aluminum primary structures in airplanes are virtually nonexistent, because the high-strength alloys utilized have low weldability and low weld-joint efficiencies. Some of the alloys, such as 2024-T4, also have their corrosion resistance lowered in the heat-affected zone if left in the as-welded condition.

The improved welding processes and higher-strength weldable alloys developed during the past decade offer new possibilities for welded primary structures. For example, the weldability and strength of alloys 2219 and 7039, and the brazeability and strength of X7005, open new avenues for design and manufacture of aircraft structures.

Light aircraft

Light aircraft have airframes primarily of all-aluminum semi-monocoque construction, however, a few light planes have tubular truss load-carrying construction with fabric or aluminum skin, or both. Aluminum skin is normally of the minimum practical thickness: 0.015 to 0.025 in. Although design strength requirements are relatively low, the skin needs moderately high yield strength and hardness to minimize ground damage from stones, debris, mechanics’ tools, and general handling. Other primary factors involved in selecting an alloy for this application are corrosion resistance, cost, and appearance. Alloys 6061-T6 and alclad 2024-T3 are the primary choices.

Skin sheet on light airplanes of recent design and construction generally is alclad 2024-T3. The internal structure comprises stringers, spars, bulkheads, chord members, and various attaching fittings made of aluminum extrusions, formed sheet, forgings, and castings.

The alloys most used for extruded members are 2024-T4 for sections less than 0.125 in. thick and for general application, and 2014-T6 for thicker, more highly stressed sections. Alloy 6061-T6 has considerable application for extrusions requiring thin sections and excellent corrosion resistance. Alloy 2014-T6 is the primary forging alloy, especially for landing gear and hydraulic cylinders. Alloy 6061-T6 and its forging counterpart 6151-T6 often are utilized in miscellaneous fittings for reasons of economy and increased corrosion performance, when the parts are not highly stressed.

Alloys 356-T6 and A356-T6 are the primary casting alloys employed for brackets, bellcranks, pulleys, and various fittings. Wheels are produced in these alloys as permanent mold or sand castings. Die castings in alloy A380 also are satisfactory for wheels for light aircraft.

For low-stressed structure in light aircraft, alloys 3003-H12, H14, and H16; 5052-O, H32, H34, and H36; and 6061-T4 and T6 are sometimes employed. These alloys are also primary selections for fuel, lubricating oil, and hydraulic oil tanks, piping, and instrument tubing and brackets, especially where welding is required. Alloys 3003, 6061, and 6951 are utilized extensively in brazed heat exchangers and hydraulic accessories. Recently developed alloys, such as 5086, 5454, 5456, 6070, and the new weldable aluminum-magnesium-zinc alloys, offer strength advantages over those previously mentioned.

Sheet assembly of light aircraft is accomplished predominantly with rivets of alloys 2017-T4, 2117-T4, or 2024-T4. Self-tapping sheet metal screws are available in aluminum alloys, but cadmium-plated steel screws are employed more commonly to obtain higher shear strength and driveability. Alloy 2024-T4 with an anodic coating is standard for aluminum screws, bolts, and nuts made to military specifications. Alloy 6262-T9, however, is superior for nuts, because of its virtual immunity to stress-corrosion cracking. [3]

Related Research Articles

<span class="mw-page-title-main">Duralumin</span> Trade name of age-hardenable aluminium alloy

Duralumin is a trade name for one of the earliest types of age-hardenable aluminium–copper alloys. The term is a combination of Dürener and aluminium. Its use as a trade name is obsolete. Today the term mainly refers to aluminium-copper alloys, designated as the 2000 series by the international alloy designation system (IADS), as with 2014 and 2024 alloys used in airframe fabrication.

Titanium alloys are alloys that contain a mixture of titanium and other chemical elements. Such alloys have very high tensile strength and toughness. They are light in weight, have extraordinary corrosion resistance and the ability to withstand extreme temperatures. However, the high cost of both raw materials and processing limit their use to military applications, aircraft, spacecraft, bicycles, medical devices, jewelry, highly stressed components such as connecting rods on expensive sports cars and some premium sports equipment and consumer electronics.

<span class="mw-page-title-main">Magnesium alloy</span> Mixture of magnesium with other metals

Magnesium alloys are mixtures of magnesium with other metals, often aluminium, zinc, manganese, silicon, copper, rare earths and zirconium. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminium, copper and steel; therefore, magnesium alloys are typically used as cast alloys, but research of wrought alloys has been more extensive since 2003. Cast magnesium alloys are used for many components of modern automobiles and have been used in some high-performance vehicles; die-cast magnesium is also used for camera bodies and components in lenses.

<span class="mw-page-title-main">Aluminium alloy</span> Alloy in which aluminium is the predominant metal

An aluminium alloy (UK/IUPAC) or aluminum alloy is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.

Aluminium–lithium alloys are a set of alloys of aluminium and lithium, often also including copper and zirconium. Since lithium is the least dense elemental metal, these alloys are significantly less dense than aluminium. Commercial Al–Li alloys contain up to 2.45% lithium by mass.

6061 aluminium alloy is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

7075 aluminium alloy (AA7075) is an aluminium alloy with zinc as the primary alloying element. It has excellent mechanical properties and exhibits good ductility, high strength, toughness, and good resistance to fatigue. It is more susceptible to embrittlement than many other aluminium alloys because of microsegregation, but has significantly better corrosion resistance than the alloys from the 2000 series. It is one of the most commonly used aluminium alloys for highly stressed structural applications and has been extensively used in aircraft structural parts.

2024 aluminium alloy is an aluminium alloy, with copper as the primary alloying element. It is used in applications requiring high strength to weight ratio, as well as good fatigue resistance. It is weldable only through friction welding, and has average machinability. Due to poor corrosion resistance, it is often clad with aluminium or Al-1Zn for protection, although this may reduce the fatigue strength. In older systems of terminology, 2XXX series alloys were known as duralumin, and this alloy was named 24ST.

5086 aluminium alloy is an aluminium–magnesium alloy, primarily alloyed with magnesium. It is not strengthened by heat treatment, instead becoming stronger due to strain hardening, or cold mechanical working of the material.

AA 6063 is an aluminium alloy, with magnesium and silicon as the alloying elements. The standard controlling its composition is maintained by The Aluminum Association. It has generally good mechanical properties and is heat treatable and weldable. It is similar to the British aluminium alloy HE9.

<span class="mw-page-title-main">Alclad</span>

Alclad is a corrosion-resistant aluminium sheet formed from high-purity aluminium surface layers metallurgically bonded to high-strength aluminium alloy core material. It has a melting point of about 500 °C (932 °F). Alclad is a trademark of Alcoa but the term is also used generically.

<span class="mw-page-title-main">Friction stir processing</span>

Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into the workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. The precursor of this technique, friction stir welding, is used to join multiple pieces of metal without creating the heat affected zone typical of fusion welding.

<span class="mw-page-title-main">Bushcaddy R-80</span> Canadian homebuilt light aircraft

The Bushcaddy R-80 is a Canadian ultralight and light-sport aircraft that was designed by Jean Eudes Potvin of Lac Saint-Jean, Quebec in 1994 and produced by his company Club Aeronautique Delisle Incorporated (CADI). It was later built by Canadian Light Aircraft Sales and Service (CLASS) of St. Lazare, Quebec and later Les Cedres, Quebec and now Bushcaddy of Lachute, Quebec.

<span class="mw-page-title-main">Bushcaddy R-120</span> Canadian homebuilt light aircraft

The Bushcaddy R-120 is a Canadian kit aircraft produced by Canadian Light Aircraft Sales and Service (CLASS) of St. Lazare, Quebec and later Les Cedres, Quebec and now Bushcaddy of Lachute, Quebec and more recently Cornwall Regional Airport in Summerstown, Ontario.

7079 aluminium alloy is a high strength, heat treatable wrought aluminium alloy used in the aircraft industry. Age-hardening heat treatment enhances the characteristics of AL 7079, eliminating variations in characteristics seen in Aluminium 7075.

2219 aluminium alloy is an alloy in the wrought aluminium-copper family. It can be heat-treated to produce tempers with higher strength but lower ductility. The aluminium-copper alloys have high strength, but are generally less corrosion resistant and harder to weld than other types of aluminium alloys. To compensate for the lower corrosion resistance, 2219 aluminium can be clad in a commercially pure alloy such as 1050 or painted. This alloy is commonly formed by both extrusion and forging, but is not used in casting.

Aluminium 7050 alloy is a heat treatable alloy. It has high toughness, high strength. It has high stress corrosion cracking resistance. It has electric conductivity of value having 40 percent of copper. 7050 aluminium is known as a commercial aerospace alloy.

7178 aluminum alloy is wrought alloy. It has high zinc content. After annealing, aluminum alloy 7178 has high machinability. Resistance welding can be used.

Aluminium–copper alloys (AlCu) are aluminium alloys that consist largely of aluminium (Al) and traces of copper (Cu) as the main alloying elements. Important grades also contain additives of magnesium and silicon, often manganese is also included to increase strength. The main area of application is aircraft construction. The alloys have medium to high strength and can be age-hardened. They are both wrought alloy. Also available as cast alloy. Their susceptibility to corrosion and their poor weldability are disadvantageous.

Aluminium–magnesium–silicon alloys (AlMgSi) are aluminium alloys—alloys that are mainly made of aluminium—that contain both magnesium and silicon as the most important alloying elements in terms of quantity. Both together account for less than 2 percent by mass. The content of magnesium is greater than that of silicon, otherwise they belong to the aluminum–silicon–magnesium alloys (AlSiMg).

References