Stopped-flow

Last updated

Stopped-flow is an experimental technique for studying chemical reactions with a half time of the order of 1 ms, introduced by Britton Chance [1] [2] and extended by Quentin Gibson [3] (Other techniques, such as the temperature-jump method, [4] are available for much faster processes.)

Contents

Description of the method

Summary

Single mixing stopped-flow based on independent stepping motors and using a hard-stop. SF principle.png
Single mixing stopped-flow based on independent stepping motors and using a hard-stop.
Diagrammatic sketch of a stopped flow instrument Diagram of stopped flow equipment.png
Diagrammatic sketch of a stopped flow instrument

Stopped-flow spectrometry allows chemical kinetics of fast reactions (with half times of the order of milliseconds) to be studied in solution. It was first used primarily to study enzyme-catalyzed reactions. Then the stopped-flow rapidly found its place in almost all biochemistry, biophysics, and chemistry laboratories with a need to follow chemical reactions in the millisecond time scale. In its simplest form, a stopped-flow mixes two solutions. Small volumes of solutions are rapidly and continuously driven into a high-efficiency mixer. This mixing process then initiates an extremely fast reaction. The newly mixed solution travels to the observation cell and pushes out the contents of the cell (the solution remaining from the previous experiment or from necessary washing steps). The time required for this solution to pass from the mixing point to the observation point is known as dead time. The minimum injection volume will depend on the volume of the mixing cell. Once enough solution has been injected to completely remove the previous solution, the instrument reaches a stationary state and the flow can be stopped. Depending on the syringe drive technology, the flow stop is achieved by using a stop valve called the hard-stop or by using a stop syringe. The stopped-flow also sends a ‘start signal’ to the detector called the trigger so the reaction can be observed. The timing of the trigger is usually software controlled so the user can trigger at the same time the flow stops or a few milliseconds before the stop to check the stationary state has been reached.

So this is a very economical technique.

Reactant syringes

Two syringes are filled with solutions that do not undergo a chemical reaction until mixed together. These have pistons that are driven by a single drive piston or by independent stepping motors, so that they are coupled together and their contents are forced out simultaneously into a mixing device.

Mixing chamber

Laminar flow (left) produces little or no mixing, but turbulent flow (right) produces very rapid mixing Laminar and turbulent flow.png
Laminar flow (left) produces little or no mixing, but turbulent flow (right) produces very rapid mixing

Once the two solutions are forced out of their syringes they enter a mixing system that has baffles to ensure complete mixing, with turbulent flow rather than laminar flow, which would allow the two solutions to flow side by side with incomplete mixing.

Dead time

The dead time is the time for the solutions to go from the mixing point to the observation point, it is the part of the kinetics which cannot be observed. So the lower the dead time, the more information the user can get. In older instruments this could be of the order of 1 ms, but improvements now allow a dead time of about 0.3 ms. [5]

Observation cell

stopped-flow observation head Cuvette design.png
stopped-flow observation head

The mixed reactants pass an observation cell that allows the reaction to be followed spectrophotometrically, typically by ultraviolet spectroscopy, fluorescence spectroscopy, circular dichroism or light scattering, and it is now common to combine several of these. [6] Observation cuvette with a short light path (0.75 to 1.5mm) are usually preferred for fluorescence measurements to reduce self-absorption effects. Observation cuvette with longer light path (0.5 cm to 1 cm) are preferred for absorbance measurements. Modern stopped-flow can accommodate different models of cells and it is possible to change the cuvette between two experiments. For stopped-flow X-ray measurements, a quartz capillary with thin wall is used to minimize quartz absorption. Simultaneous x-ray and absorbance measurements are possible in the same capillary.

Stopping

Once through the observation cell the mixture enters a third syringe that contains a piston that is driven by the flow to activate a switch to stop the flow and activate the observation.

Continuous flow

Diagram of continuous flow spectrometer for reactions with half times of a few milliseconds Diagram of continuous flow.png
Diagram of continuous flow spectrometer for reactions with half times of a few milliseconds

The stopped-flow method is a development of the continuous-flow method used by Hamilton Hartridge and Francis Roughton [7] to study the binding of O2 to hemoglobin. In the absence of any stopping system the reaction mixture passed to a long tube past an observation system (consisting in 1923 of a simple colorimeter) to waste. By moving the colorimeter along the tube, and knowing the flow rate, Hartridge and Roughton could measure the process after a known time.

In its time this was a revolutionary advance showing an apparently intractable problem (studying a process taking milliseconds with equipment that required seconds for each measurement) could be solved with simple equipment. However, in practice it was limited to reactants available in large quantities: for proteins this effectively limited it to reactions of hemoglobin. For practical purposes this approach is obsolete.

Quenched flow

Diagram of quenched flow apparatus for following reactions with half times of a few milliseconds Quenched Flow method for fast reactions.png
Diagram of quenched flow apparatus for following reactions with half times of a few milliseconds

The stopped-flow method depends on the existence of spectroscopic properties that can be used for following the reaction. When that is not the case quenched flow provides an alternative that uses conventional chemical methods for analysis. [8] Instead of a mechanical stopping system the reaction is stopped by quenching, the products being delivered to a recipient that stops the reaction immediately, either by instantaneous freezing or by denaturing the enzyme with a chemical denaturant or exposing the sample to a denaturing light source. As in the continuous-flow method, the time between mixing and quenching can be varied by varying the length of the tube.

Comparison of stopped flow with quenched flow for nitrogenase from Klebsiella pneumoniae Comparison of stopped flow with quenched flow.png
Comparison of stopped flow with quenched flow for nitrogenase from Klebsiella pneumoniae

The pulsed quenched flow method introduced by Alan Fersht and Ross Jakes [9] overcomes the need for a long tube. The reaction is initiated exactly as in a stopped-flow experiment, but there is a third syringe that brings about quenching a definite and preset time after the initiation.

Quenched flow has both advantages and disadvantages with respect to stopped flow. On the one hand, chemical analysis makes it clear what process is being measured, whereas it may not always be obvious what process a spectroscopic signal represents. On the other hand, quenched flow is much more laborious, as each point along the time course must be determined separately. The image at left for catalysis by nitrogenase from Klebsiella pneumoniae [10] illustrates both of these points: the agreement in half times indicates that the absorbance at 420 nm measured the release of Pi, but the quenched-flow experiment required 11 data points.

Related Research Articles

Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate. Chemical kinetics includes investigations of how experimental conditions influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that also can describe the characteristics of a chemical reaction.

<span class="mw-page-title-main">Spectrophotometry</span> Branch of spectroscopy

Spectrophotometry is a branch of electromagnetic spectroscopy concerned with the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength. Spectrophotometry uses photometers, known as spectrophotometers, that can measure the intensity of a light beam at different wavelengths. Although spectrophotometry is most commonly applied to ultraviolet, visible, and infrared radiation, modern spectrophotometers can interrogate wide swaths of the electromagnetic spectrum, including x-ray, ultraviolet, visible, infrared, and/or microwave wavelengths.

Plate readers, also known as microplate readers or microplate photometers, are instruments which are used to detect biological, chemical or physical events of samples in microtiter plates. They are widely used in research, drug discovery, bioassay validation, quality control and manufacturing processes in the pharmaceutical and biotechnological industry and academic organizations. Sample reactions can be assayed in 1-1536 well format microtiter plates. The most common microplate format used in academic research laboratories or clinical diagnostic laboratories is 96-well with a typical reaction volume between 100 and 200 µL per well. Higher density microplates are typically used for screening applications, when throughput and assay cost per sample become critical parameters, with a typical assay volume between 5 and 50 µL per well. Common detection modes for microplate assays are absorbance, fluorescence intensity, luminescence, time-resolved fluorescence, and fluorescence polarization.

<span class="mw-page-title-main">Alan Fersht</span> British chemist

Sir Alan Roy Fersht is a British chemist at the MRC Laboratory of Molecular Biology, Cambridge, and an Emeritus Professor in the Department of Chemistry at the University of Cambridge. He was Master of Gonville and Caius College, Cambridge from 2012 to 2018. He works on protein folding, and is sometimes described as a founder of protein engineering.

<span class="mw-page-title-main">Syringe driver</span>

A syringe driver, also known as a syringe pump, is a small infusion pump, used to gradually administer small amounts of fluid to a patient or for use in chemical and biomedical research. Some syringe drivers can both infuse and withdraw solutions.

<span class="mw-page-title-main">Enzyme assay</span> Laboratory method for measuring enzymatic activity

Enzyme assays are laboratory methods for measuring enzymatic activity. They are vital for the study of enzyme kinetics and enzyme inhibition.

<span class="mw-page-title-main">Enzyme kinetics</span> Study of biochemical reaction rates catalysed by an enzyme

Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or a modifier might affect the rate.

The temperature jump method is a technique used in chemical kinetics for the measurement of very rapid reaction rates. It is one of a class of chemical relaxation methods pioneered by the German physical chemist Manfred Eigen in the 1950s. In these methods, a reacting system initially at equilibrium is perturbed rapidly and then observed as it relaxes back to equilibrium. In the case of temperature jump, the perturbation involves rapid heating which changes the value of the equilibrium constant, followed by relaxation to equilibrium at the new temperature.

<span class="mw-page-title-main">Isothermal titration calorimetry</span>

In chemical thermodynamics, isothermal titration calorimetry (ITC) is a physical technique used to determine the thermodynamic parameters of interactions in solution. It is most often used to study the binding of small molecules to larger macromolecules in a label-free environment. It consists of two cells which are enclosed in an adiabatic jacket. The compounds to be studied are placed in the sample cell, while the other cell, the reference cell, is used as a control and contains the buffer in which the sample is dissolved.

Hydrogen–deuterium exchange is a chemical reaction in which a covalently bonded hydrogen atom is replaced by a deuterium atom, or vice versa. It can be applied most easily to exchangeable protons and deuterons, where such a transformation occurs in the presence of a suitable deuterium source, without any catalyst. The use of acid, base or metal catalysts, coupled with conditions of increased temperature and pressure, can facilitate the exchange of non-exchangeable hydrogen atoms, so long as the substrate is robust to the conditions and reagents employed. This often results in perdeuteration: hydrogen-deuterium exchange of all non-exchangeable hydrogen atoms in a molecule.

<span class="mw-page-title-main">Chevron plot</span> Graph of protein folding kinetics

A chevron plot is a way of representing protein folding kinetic data in the presence of varying concentrations of denaturant that disrupts the protein's native tertiary structure. The plot is known as "chevron" plot because of the canonical v, or chevron shape observed when the logarithm of the observed relaxation rate is plotted as a function of the denaturant concentration.

Colorimetric analysis is a method of determining the concentration of a chemical element or chemical compound in a solution with the aid of a color reagent. It is applicable to both organic compounds and inorganic compounds and may be used with or without an enzymatic stage. The method is widely used in medical laboratories and for industrial purposes, e.g. the analysis of water samples in connection with industrial water treatment.

Pressure jump is a technique used in the study of chemical kinetics. It involves making rapid changes to the pressure of an experimental system and observing the return to equilibrium or steady state. This allows the study of the shift in equilibrium of reactions that equilibrate in periods between milliseconds to hours, these changes often being observed using absorption spectroscopy, or fluorescence spectroscopy though other spectroscopic techniques such as CD, FTIR or NMR can also be used.

In chemistry, ion transport number, also called the transference number, is the fraction of the total electric current carried in an electrolyte by a given ionic species i:

Scanning electrochemical microscopy (SECM) is a technique within the broader class of scanning probe microscopy (SPM) that is used to measure the local electrochemical behavior of liquid/solid, liquid/gas and liquid/liquid interfaces. Initial characterization of the technique was credited to University of Texas electrochemist, Allen J. Bard, in 1989. Since then, the theoretical underpinnings have matured to allow widespread use of the technique in chemistry, biology and materials science. Spatially resolved electrochemical signals can be acquired by measuring the current at an ultramicroelectrode (UME) tip as a function of precise tip position over a substrate region of interest. Interpretation of the SECM signal is based on the concept of diffusion-limited current. Two-dimensional raster scan information can be compiled to generate images of surface reactivity and chemical kinetics.

Hamilton Hartridge was a British eye physiologist and medical writer. Known for his ingenious experimentation and instrument construction abilities, he designed what is called the Hartridge Reversion Spectrometer. This was used for pioneering studies on haemoglobin oxygen-binding studies.

<span class="mw-page-title-main">Quentin Gibson</span> American physiologist

Quentin Howieson Gibson FRS was a Scottish American physiologist, and professor at the University of Sheffield, and Cornell University.

<span class="mw-page-title-main">Fast-scan cyclic voltammetry</span> Method of chemical analysis

Fast-scan cyclic voltammetry (FSCV) is cyclic voltammetry with a very high scan rate (up to 1×106 V·s−1). Application of high scan rate allows rapid acquisition of a voltammogram within several milliseconds and ensures high temporal resolution of this electroanalytical technique. An acquisition rate of 10 Hz is routinely employed.

George Paul Hess was a research biochemist who specialized in studying acetylcholine receptors. Hess developed laser pulse photolysis and a quench flow technique.

Francis John Worsley Roughton was an English physiologist and biochemist. He began to conduct experiments to study the reactions involving haemoglobin and oxygen and went on to make pioneering studies of blood biochemistry and gas interaction kinetics. Along with Hamilton Hartridge, he developed continuous monitoring approaches to study liquid-gas binding reactions and enzyme kinetics.

References

  1. Chance, Britton (1951). "Rapid and Sensitive Spectrophotometry. I. The Accelerated and Stopped‐Flow Methods for the Measurement of the Reaction Kinetics and Spectra of Unstable Compounds in the Visible Region of the Spectrum". Review of Scientific Instruments. 22 (8): 619–627. doi:10.1063/1.1746019.
  2. Chance, Britton; Legallais, Victor (1951). "Rapid and Sensitive Spectrophotometry. II. A Stopped‐Flow Attachment for a Stabilized Quartz Spectrophotometer". Review of Scientific Instruments. 22 (8): 627–634. doi:10.1063/1.1746020.
  3. Gibson, Q. H. (1954). "Stopped-flow apparatus for the study of rapid reactions". Discussions of the Faraday Society. 17: 137. doi:10.1039/df9541700137.
  4. Eigen, M. (1954). "Methods for investigation of ionic reactions in aqueous solutions with half-times as short as 10–9sec. Application to neutralization and hydrolysis reactions". Discuss. Faraday Soc. 17: 194–205. doi:10.1039/df9541700194.
  5. Clark, Charles R. (1997). "A Stopped-Flow Kinetics Experiment for Advanced Undergraduate Laboratories: Formation of Iron(III) Thiocyanate". Journal of Chemical Education. 74 (10): 1214. Bibcode:1997JChEd..74.1214C. doi:10.1021/ed074p1214.
  6. Guillerm, Jessica; Frère, Jean-Marie; Meersman, Filip; Matagne, André (2021). "The right-handed parallel β-helix topology of Erwinia chrysanthemi pectin methylesterase is intimately associated with both sequential folding and resistance to high pressure". Biomolecules. 11 (8): 1083. doi: 10.3390/biom11081083 . PMC   8392785 . PMID   34439750.
  7. Hartridge, H.; Roughton, F. J. W. (1923). "A method for measuring the velocity of very rapid chemical reactions". Proceedings of the Royal Society A. 104 (726): 376–394. Bibcode:1923RSPSA.104..376H. doi: 10.1098/rspa.1923.0116 .
  8. Pinsent, B R W (1954). "A quenching method for studying rapid reactions". Discussions of the Faraday Society. 17: 140–141. doi:10.1039/df9541700140.
  9. Fersht, A R; Jakes, R (1975). "Demonstration of two reaction pathways for aminoacylation of transfer-RNA: application of pulsed quenched flow technique". Biochemistry. 14 (15): 3350–3356. doi:10.1021/bi00686a010.
  10. Thorneley, R N F; Cornish-Bowden, A (1977). "Kinetics of nitrogenase of Klebsiella-pneumoniae: heterotropic interactions between magnesium-adenosine 5'-diphosphate and magnesium-adenosine 5'-triphosphate". Biochem. J. 165 (2): 255–262. doi:10.1042/bj1650255. PMC   1164896 . PMID   336036.

Further reading