SymbOS

Last updated
SymbOS
Symbos-cpc.png
Screenshot of the SymbOS desktop on the Amstrad CPC
Developer SymbiosiS
Written in Assembly language (Zilog Z80)
Working stateCurrent
Source model Freeware
Initial release1 May 2006;16 years ago (2006-05-01)
Latest release 3.1 / 30 December 2021;7 months ago (2021-12-30)
Available in English
Platforms Amstrad CPC, MSX, Amstrad PCW, Enterprise 64/128
Kernel type Microkernel
Default
user interface
Graphical user interface
Official website www.symbos.de

SYmbiosis Multitasking Based Operating System (SymbOS) is a multitasking operating system for Zilog Z80-based 8-bit computer systems.

Contents

Contrary to early 8-bit operating systems it is based on a microkernel, which provides preemptive and priority-oriented multitasking and manages random-access memory (RAM) with a size of up to 1024  KB. SymbOS contains a Microsoft Windows like graphical user interface (GUI), supports hard disks with a capacity of up to 128 GB and can already be booted on an unexpanded Amstrad CPC-6128, a 128K-MSX2 and an Amstrad PCW.

As of August 30, 2017 it is available for the Amstrad CPC series of computers, all MSX models starting from the MSX2 standard, MSX with V9990 graphics chip, all Amstrad PCW models, CPC-TREX, C-ONE and the Enterprise 64/128 computers. [1]

Motivation and rationale

SymbOS was originally started as an experiment to find out to what extent it is possible to implement a multitasking operating system with a windowed GUI on an 8-bit computer from 1985. GEOS contributed to the motivation, but the structure and features of SymbOS aren't similar to that system. The release in 2006 proved that such a "mini windows" system is possible on a then 20-year-old home computer with only quantitative limitations. SymbOS is one of the largest retro computing software projects of recent years. One of the goals of the project is to allow these old machines to be used like a modern PC, using hardware extensions.

Although only an 8-bit CPU, the Z80 can run a preemptive multitasking operating system. Features such as memory protection, which the Z80 lacks, are not essential in such an OS. For example, AmigaOS also lacks memory protection. The MP/M OS proved that multitasking on the Z80 CPU was possible. Yet, it was generally unavailable for home computers.

While the MOS Technology 6502 cannot move the stack pointer, the Z80 can freely relocate it to any position in memory, which makes it easier to implement preemptive multitasking. The existence of an alternative register set accelerates context switching between tasks dramatically. The restriction of Z80 system to a 64 KB address space can be solved with bank switching. In this way, computers like the Amstrad CPC and PCW, MSX, Enterprise or SAM Coupé can access hundreds or thousands of kilobytes of memory.

Design

SymbOS includes a microkernel, which can perform task management, memory management and inter-process communication. [2]

Task management

For task management, a combination of preemptive and cooperative multitasking was chosen, which makes different task priorities possible. Preemptive means that tasks are interrupted after a certain amount of time by the operating system, in order to share the CPU time with other tasks. Cooperatively means that a task stops using CPU time by itself. It does that, if it's finished with its current job or waiting for a certain event. Because of this combination it is possible to assign priorities. Tasks with low priority get CPU time only if all tasks with higher priorities are not then working.

Memory and banking management

Memory management divides the entire RAM into small 256 byte blocks, which can be assigned dynamically. Applications are always running in a secondary 64 KB RAM bank, where no memory space is occupied by the operating system or the video memory. That makes it possible to reserve up to 63 KB in one piece.

Banking management ensures that the system can administer memory with a size of up to one megabyte, even though the Z80 CPU has only a 16-bit address bus. It makes transparent access to memory and functions placed in other 64 KB banks possible.

Interprocess communication

Communication between different tasks and the operating system usually does not take place via calls, but is done via messages. This is necessary inside a multitasking environment to avoid organization problems with the stack, global variables and shared system resources. The SymbOS kernel supports synchronous and asynchronous IPC.

File system management

SymbOS supports the file systems CP/M, AMSDOS, and File Allocation Table (FAT) 12-16-32, on all platforms. With the last one, SymbOS can address mass storage devices with a capacity of up to 128 GB. Also, the ability to administer files with a size of up to 2 GB is uncommon for an 8-bit system. Because of the FAT support data exchange with other computers is quite easy, as most 32 and 64 bit operating systems do support the three FAT file systems.

Interface

Screenshot of the MSX version of SymbOS Symbos-msx2.gif
Screenshot of the MSX version of SymbOS

The graphical user interface (GUI) of SymbOS works in a fully object-oriented manner. The look and feel mimics that of Microsoft Windows. It contains the well-known task bar with the clock and the "start" menu and can open up to 32 windows that can be moved, resized and scrolled. The whole system is written in optimized assembly language, meaning that the GUI runs as fast as the host machine supports.

Content of a window is defined with "controls" that are primitive GUI elements such as sliders, check boxes, text lines, buttons or graphics. The background or invisible areas of a window don't need to be saved in a separate bitmap buffer. If an area needs to be restored on the display, its contents will be redrawn instead. This makes SymbOS GUI much more memory-friendly compared to most other 8-bit GUIs.

Applications

There are several standard applications available for SymbOS, which are designed to resemble similar software available on other operating systems. Examples include Notepad, SymCommander (similar to Norton Commander), SymShell (cmd.exe), SymZilla (Mozilla Firefox), SymPlay (QuickTime), SymAmp (Winamp) and Minesweeper. [3]

Commands

The following list of commands is supported by SymShell. [4]

Development and release

SymbOS was originally developed for the Amstrad CPC. Its modular structure, with strict separation of general and hardware components, makes porting to other Z80-based systems comparatively easy.

The MSX computers starting with the MSX2 standard have been supported since summer 2006. [5] The Amstrad PCW port has been available since August 2007. [6] Versions for the Enterprise 128, the SAM Coupé and such clones of ZXSpectrum as ATM-turbo 2+ and ZX-Evolution/BaseConf are possible, too, as they fulfill the requirements for SymbOS.

By keeping a basic condition for an operating system, the strict separation of hardware and application software by an intermediate layer, SymbOS applications run platform-independently on each computer and doesn't need to be adapted for different systems, with the obvious exception of applications that directly access particular hardware.

See also

Related Research Articles

Amstrad CPC Home computers produced by Amstrad

The Amstrad CPC is a series of 8-bit home computers produced by Amstrad between 1984 and 1990. It was designed to compete in the mid-1980s home computer market dominated by the Commodore 64 and the Sinclair ZX Spectrum, where it successfully established itself primarily in the United Kingdom, France, Spain, and the German-speaking parts of Europe.

Computer multitasking Concurrent execution of multiple processes

In computing, multitasking is the concurrent execution of multiple tasks over a certain period of time. New tasks can interrupt already started ones before they finish, instead of waiting for them to end. As a result, a computer executes segments of multiple tasks in an interleaved manner, while the tasks share common processing resources such as central processing units (CPUs) and main memory. Multitasking automatically interrupts the running program, saving its state and loading the saved state of another program and transferring control to it. This "context switch" may be initiated at fixed time intervals, or the running program may be coded to signal to the supervisory software when it can be interrupted.

<span class="mw-page-title-main">Operating system</span> Software that manages computer hardware resources

An operating system (OS) is system software that manages computer hardware, software resources, and provides common services for computer programs.

A real-time operating system (RTOS) is an operating system (OS) for real-time applications that processes data and events that have critically defined time constraints. A RTOS is distinct from a time-sharing operating system, such as Unix, which manages the sharing of system resources with a scheduler, data buffers, or fixed task prioritization in a multitasking or multiprogramming environment. Processing time requirements need to be fully understood and bound rather than just kept as a minimum. All processing must occur within the defined constraints. Real-time operating systems are event-driven and preemptive, meaning the OS is capable of monitoring the relevant priority of competing tasks, and make changes to the task priority. Event-driven systems switch between tasks based on their priorities, while time-sharing systems switch the task based on clock interrupts.

Amstrad was a British electronics company, founded in 1968 by Alan Sugar at the age of 21. The name is a contraction of Alan Michael Sugar Trading. It was first listed on the London Stock Exchange in April 1980. During the late 1980s, Amstrad had a substantial share of the PC market in the UK. Amstrad was once a FTSE 100 Index constituent, but since 2007 has been wholly owned by Sky UK. As of 2006, Amstrad's main business was manufacturing Sky UK interactive boxes. In 2010, Sky integrated Amstrad's satellite division as part of Sky so they could make their own set-top boxes in-house.

OS-9 is a family of real-time, process-based, multitasking, multi-user operating systems, developed in the 1980s, originally by Microware Systems Corporation for the Motorola 6809 microprocessor. It was purchased by Radisys Corp in 2001, and was purchased again in 2013 by its current owner Microware LP.

Process (computing) Particular execution of a computer program

In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity. Depending on the OS, a process may be made up of multiple threads of execution that execute instructions concurrently.

Amstrad PCW

The Amstrad PCW series is a range of personal computers produced by British company Amstrad from 1985 to 1998, and also sold under licence in Europe as the "Joyce" by the German electronics company Schneider in the early years of the series' life. The PCW, short for Personal Computer Word-processor, was targeted at the wordprocessing and home office markets. When it was launched the cost of a PCW system was under 25% of the cost of almost all IBM-compatible PC systems in the UK, and as a result the machine was very popular both in the UK and in Europe, persuading many technophobes to venture into using computers. However the last two models, introduced in the mid-1990s, were commercial failures, being squeezed out of the market by the falling prices, greater capabilities and wider range of software for IBM-compatible PCs.

In computing, scheduling is the action of assigning resources to perform tasks. The resources may be processors, network links or expansion cards. The tasks may be threads, processes or data flows.

MultiFinder is an extension for the Apple Macintosh's classic Mac OS, introduced on August 11, 1987 and included with System Software 5. It adds cooperative multitasking of several applications at once – a great improvement over the previous Macintosh systems, which can only run one application at a time. With the advent of System 7, MultiFinder became a standard integrated part of the operating system and remained until the introduction of Mac OS X.

Enterprise (computer) Zilog Z80-based home computer

The Enterprise is a Zilog Z80-based home computer announced in 1983, but through a series of delays, not commercially available until 1985. The specification as released was powerful and one of the higher end in its class. This was due to the use of ASICs for graphics and sound which took workload away from the CPU, an extensive implementation of ANSI BASIC and a bank switching system to allow for larger amounts of RAM than the Z80 natively supported. It also featured a distinctive and colourful case design, and promise of multiple expansion options. Ultimately it was not commercially successful, after multiple renames, delays and a changing market place. Its manufacturer calling in the receivers in 1986 with significant debt. It was developed by British company Intelligent Software and marketed by Enterprise Computers. Its two variants are the Enterprise 64, with 64 kilobytes of Random Access Memory (RAM), and the Enterprise 128, with 128 KB of RAM.

IBM TopView Former front-end to DOS

TopView is the first object-oriented, multitasking, and windowing, personal computer operating environment for PC DOS developed by IBM, announced in August 1984 and shipped in March 1985. TopView provided a text-mode operating environment that allowed users to run more than one application at the same time on a PC. IBM demonstrated an early version of the product to key customers before making it generally available, around the time they shipped their new PC AT computer.

C-One

The C-One is a single-board computer (SBC) created in 2002 as an enhanced version of the Commodore 64, a home computer popular in the 1980s. Designed by Jeri Ellsworth and Jens Schönfeld from Individual Computers, who manufactured the boards themselves, the C-One has been re-engineered to allow cloning of other 8-bit computers.

Micro-Controller Operating Systems is a real-time operating system (RTOS) designed by Jean J. Labrosse in 1991. It is a priority-based preemptive real-time kernel for microprocessors, written mostly in the programming language C. It is intended for use in embedded systems.

In computing, preemption is the act of temporarily interrupting an executing task, with the intention of resuming it at a later time. This interrupt is done by an external scheduler with no assistance or cooperation from the task. This preemptive scheduler usually runs in the most privileged protection ring, meaning that interruption and resuming are considered highly secure actions. Such a change in the currently executing task of a processor is known as context switching.

Cooperative multitasking, also known as non-preemptive multitasking, is a style of computer multitasking in which the operating system never initiates a context switch from a running process to another process. Instead, in order to run multiple applications concurrently, processes voluntarily yield control periodically or when idle or logically blocked. This type of multitasking is called cooperative because all programs must cooperate for the scheduling scheme to work.

<span class="mw-page-title-main">Home computer</span> Class of microcomputers

Home computers were a class of microcomputers that entered the market in 1977 and became common during the 1980s. They were marketed to consumers as affordable and accessible computers that, for the first time, were intended for the use of a single nontechnical user. These computers were a distinct market segment that typically cost much less than business, scientific or engineering-oriented computers of the time such as those running CP/M or the IBM PC, and were generally less powerful in terms of memory and expandability. However, a home computer often had better graphics and sound than contemporary business computers. Their most common uses were playing video games, but they were also regularly used for word processing and programming.

References