Tannic acid

Last updated
Tannic acid
Tannic acid.svg
Chemical structure of penta(digalloyl)glucose, a representative component of tannic acid
Tannic acid STICK model decagalloyl.png
Names
IUPAC name
1,2,3,4,6-penta-O-{3,4-dihydroxy-5-[(3,4,5-trihydroxybenzoyl)oxy]benzoyl}-D-glucopyranose
Systematic IUPAC name
2,3-dihydroxy-5-({[(2R,3R,4S,5R,6R)-3,4,5,6-tetrakis({3,4-dihydroxy-5-[(3,4,5-trihydroxyphenyl)carbonyloxy]phenyl}carbonyloxy)oxan-2-yl]methoxy}carbonyl)phenyl 3,4,5-trihydroxybenzoate
Other names
  • Acidum tannicum
  • Gallotannic acid
  • Digallic acid
  • Gallotannin
  • Tannimum
  • Quercitannin
  • Oak bark tannin
  • Quercotannic acid
  • Querci-tannic acid
  • Querco-tannic acid
Identifiers
3D model (JSmol)
8186386
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.014.321 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C76H52O46/c77-32-1-22(2-33(78)53(32)92)67(103)113-47-16-27(11-42(87)58(47)97)66(102)112-21-52-63(119-72(108)28-12-43(88)59(98)48(17-28)114-68(104)23-3-34(79)54(93)35(80)4-23)64(120-73(109)29-13-44(89)60(99)49(18-29)115-69(105)24-5-36(81)55(94)37(82)6-24)65(121-74(110)30-14-45(90)61(100)50(19-30)116-70(106)25-7-38(83)56(95)39(84)8-25)76(118-52)122-75(111)31-15-46(91)62(101)51(20-31)117-71(107)26-9-40(85)57(96)41(86)10-26/h1-20,52,63-65,76-101H,21H2/t52-,63-,64+,65-,76+/m1/s1 X mark.svgN
    Key: LRBQNJMCXXYXIU-PPKXGCFTSA-N X mark.svgN
  • InChI=1/C76H52O46/c77-32-1-22(2-33(78)53(32)92)67(103)113-47-16-27(11-42(87)58(47)97)66(102)112-21-52-63(119-72(108)28-12-43(88)59(98)48(17-28)114-68(104)23-3-34(79)54(93)35(80)4-23)64(120-73(109)29-13-44(89)60(99)49(18-29)115-69(105)24-5-36(81)55(94)37(82)6-24)65(121-74(110)30-14-45(90)61(100)50(19-30)116-70(106)25-7-38(83)56(95)39(84)8-25)76(118-52)122-75(111)31-15-46(91)62(101)51(20-31)117-71(107)26-9-40(85)57(96)41(86)10-26/h1-20,52,63-65,76-101H,21H2/t52-,63-,64+,65-,76+/m1/s1
    Key: LRBQNJMCXXYXIU-PPKXGCFTBB
  • Oc1cc(cc(O)c1O)C(=O)Oc1cc(cc(O)c1O)C(=O)OC[C@H]1O[C@H](OC(=O)c2cc(O)c(O)c(OC(=O)c3cc(O)c(O)c(O)c3)c2)[C@H](OC(=O)c2cc(O)c(O)c(OC(=O)c3cc(O)c(O)c(O)c3)c2)[C@@H](OC(=O)c2cc(O)c(O)c(OC(=O)c3cc(O)c(O)c(O)c3)c2)[C@@H]1OC(=O)c1cc(O)c(O)c(OC(=O)c2cc(O)c(O)c(O)c2)c1
Properties
C76H52O46
Molar mass 1701.19 g/mol
Density 2.12g/cm3
Melting point decomposes above 200 °C
2850 g/L or 250 g/L [1] [2]
Solubility 100 g/L in ethanol
1 g/L in glycerol and acetone
insoluble in benzene, chloroform, diethyl ether, petroleum, carbon disulfide, carbon tetrachloride.
Acidity (pKa)ca. 6
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
A bottle of tannic acid (water solution) from the redwood tree. Bottle of tannic acid.jpg
A bottle of tannic acid (water solution) from the redwood tree.

Tannic acid is a specific form of tannin, a type of polyphenol. Its weak acidity (pKa around 6) is due to the numerous phenol groups in the structure. The chemical formula for commercial tannic acid is often given as C76H52O46, which corresponds with decagalloyl glucose, but in fact it is a mixture of polygalloyl glucoses or polygalloyl quinic acid esters with the number of galloyl moieties per molecule ranging from 2 up to 12 depending on the plant source used to extract the tannic acid. Commercial tannic acid is usually extracted from any of the following plant parts: Tara pods ( Caesalpinia spinosa ), gallnuts from Rhus semialata or Quercus infectoria or Sicilian sumac leaves ( Rhus coriaria ).

Contents

According to the definitions provided in external references such as international pharmacopoeia, Food Chemicals Codex and FAO-WHO tannic acid monograph only tannins obtained from the above-mentioned plants can be considered as tannic acid. Sometimes extracts from chestnut or oak wood are also described as tannic acid but this is an incorrect use of the term. It is a yellow to light brown amorphous powder.

While tannic acid is a specific type of tannin (plant polyphenol), the two terms are sometimes (incorrectly) used interchangeably. The long-standing misuse of the terms, and its inclusion in scholarly articles has compounded the confusion. This is particularly widespread in relation to green tea and black tea, both of which contain many different types of tannins not just exclusively tannic acid. [3]

Tannic acid is not an appropriate standard for any type of tannin analysis because of its poorly defined composition.

Quercitannic and gallotannic acids

Quercitannic acid is one of the two forms of tannic acid [4] found in oak bark and leaves. [5] The other form is called gallotannic acid and is found in oak galls.

The quercitannic acid molecule is also present in quercitron, a yellow dye obtained from the bark of the Eastern black oak (Quercus velutina), a forest tree indigenous in North America. It is described as a yellowish-brown amorphous powder.

In 1838, Jöns Jacob Berzelius wrote that quercitannate is used to dissolve morphine. [6]

In 1865 in the fifth volume of "A dictionary of chemistry", Henry Watts wrote :

It exhibits with ferric salts the same reactions as gallotannic acid. It differs however from the latter in not being convertible into gallic acid, and not yielding pyrogallic acid by dry distillation. It is precipitated by sulfuric acid in red flocks. (Stenhouse, Ann. Ch. Pharm. xlv. 16.)
According to Rochleder (ibid lxiii. 202), the tannic acid of black tea is the same as that of oak-bark. [7]

In 1880, Etti gave for it the molecular formula C17H16O9. He described it as an unstable substance, having a tendency to give off water to form anhydrides (called phlobaphenes), one of which is called oak-red (C34H30O17). For him, it was not a glycoside. [8] [9]

An electrostatic potential map (blue is positive and red is negative charge) of decagalloyl tannic acid, i.e. a tannic acid derived from ten molecules of gallic acid Tannic acid ESP.png
An electrostatic potential map (blue is positive and red is negative charge) of decagalloyl tannic acid, i.e. a tannic acid derived from ten molecules of gallic acid

In Allen's "Commercial Organic Analysis", published in 1912, the formula given was C19H16O10. [10]

Other authors gave other molecular formulas like C28H26O15, while another formula found is C28H24O11. [11]

According to Lowe, two forms of the principle exist – "one soluble in water, of the formula C28H28O14, and the other scarcely soluble, C28H24O12. Both are changed by the loss of water into oak red, C28H22O11." [12]

Quercitannic acid was for a time a standard used to assess the phenolic content in spices, given as quercitannic acid equivalent. [13]

In an interesting historical note, the inventor of carborundum, Edward G. Acheson, discovered that gallotannic acid greatly improved the plasticity of clay. In his report of this discovery in 1904 he noted that the only known historical reference to the use of organic material added to clay is the use of straw mixed with clay described in the Bible, Exodus 1:11 and that the Egyptians must have been aware of his (re-)discovery. He stated "This explains why the straw was used and why the children of Israel were successful in substituting stubble for straw, a course that would hardly be possible, were the fibre of the straw depended upon as a bond feasible for the clay, but quite reasonable where the extract of the plant was used." [14]

Uses

Tannins are a basic ingredient in the chemical staining of wood, and are already present in woods like oak, walnut, and mahogany. Tannic acid can be applied to woods low in tannin so chemical stains that require tannin content will react. The presence of tannins in the bark of redwood (Sequoia) is a strong natural defense against wildfire, decomposition and infestation by certain insects such as termites. It is found in the seeds, bark, cones, and heartwood.

Tannic acid is a common mordant used in the dyeing process for cellulose fibers such as cotton, often combined with alum and/or iron. The tannin mordant should be done first as metal mordants combine well with the fiber-tannin complex. However this use has lost considerable interest.

Similarly tannic acid can also be used as an aftertreatment to improve wash fastness properties of acid dyed polyamide. It is also an alternative for fluorocarbon aftertreatments to impart anti-staining properties to polyamide yarn or carpets. However, due to economic considerations currently the only widespread use as textile auxiliary is the use as an agent to improve chlorine fastness, i.e. resistance against dye bleaching due to cleaning with hypochlorite solutions in high-end polyamide 6,6-based carpets and swimwear. It is, however, used in relatively small quantities for the activation of upholstery flock; this serves as an anti-static treatment.

Tannic acid is used in the conservation of ferrous (iron based) metal objects to passivate and inhibit corrosion. Tannic acid reacts with the corrosion products to form a more stable compound, thus preventing further corrosion from taking place. After treatment the tannic acid residue is generally left on the object so that if moisture reaches the surface the tannic acid will be rehydrated and prevent or slow any corrosion. Tannic acid treatment for conservation is very effective and widely used but it does have a significant visual effect on the object, turning the corrosion products black and any exposed metal dark blue. It should also be used with care on objects with copper alloy components as the tannic acid can have a slight etching effect on these metals.

Tannic acid is also found in commercially available iron/steel corrosion treatments, such as Hammerite Kurust.

Use in food

In many parts of the world, its uses in food are permitted. In the United States, tannic acid is generally recognized as safe by the Food and Drug Administration for use in baked goods and baking mixes, alcoholic and non-alcoholic beverages, frozen dairy products, soft and hard candy, meat products, and rendered animal fat. [15]

According to EU directive 89/107/EEC, tannic acid cannot be considered as a food additive and consequently does not hold an E number. [16] Under directive 89/107/EEC, tannic acid can be referred to as a food ingredient. The E-number E181 is sometimes incorrectly used to refer to tannic acid; this in fact refers to the INS number assigned to tannic acid under the FAO-WHO Codex Alimentarius system. [16]

Uses as a medication

In conjunction with magnesium and sometimes activated charcoal, tannic acid was once used as a treatment for many toxic substances, such as strychnine, mushroom, and ptomaine poisonings in the late 19th and early 20th centuries. [17]

The introduction of tannic acid treatment of severe burn injuries in the 1920s significantly reduced mortality rates. [18] During World War I, tannic acid dressings were prescribed to treat "burns, whether caused by incendiary bombs, mustard gas, or lewisite". [19] After the war this use was abandoned due to the development of more modern treatment regimens.

Hazards

Tannic acid could cause potential health hazards such as damage to the eye, skin, respiratory tract, and gastrointestinal tract. It may cause irritation, redness, pain, blurred vision, and possible eye damage. When tannic acid is absorbed through the skin in harmful amounts, it may cause irritation, redness, and pain. Nausea, vomiting and diarrhoea are symptoms of tannic acid ingestion and prolonged exposure may cause liver damage. Upon inhalation, tannic acid may cause respiratory tract irritation. [20]

Crocodilian coloration

Skin color in Crocodilia (crocodiles and alligators) is very dependent on water quality. Algae-laden waters produce greener skin, while tannic acid in the water from decay of leaves from overhanging trees (which produces some types of blackwater rivers) often produce darker skin in these animals. [21]

Related Research Articles

<span class="mw-page-title-main">Tannin</span> Class of astringent, bitter plant polyphenolic chemical compounds

Tannins are a class of astringent, polyphenolic biomolecules that bind to and precipitate proteins and various other organic compounds including amino acids and alkaloids.

<span class="mw-page-title-main">Bark (botany)</span> Outermost layers of stems and roots of woody plants

Bark is the outermost layer of stems and roots of woody plants. Plants with bark include trees, woody vines, and shrubs. Bark refers to all the tissues outside the vascular cambium and is a nontechnical term. It overlays the wood and consists of the inner bark and the outer bark. The inner bark, which in older stems is living tissue, includes the innermost layer of the periderm. The outer bark on older stems includes the dead tissue on the surface of the stems, along with parts of the outermost periderm and all the tissues on the outer side of the periderm. The outer bark on trees which lies external to the living periderm is also called the rhytidome.

<span class="mw-page-title-main">Gallic acid</span> 3,4,5-Trihydroxybenzoic acid

Gallic acid (also known as 3,4,5-trihydroxybenzoic acid) is a trihydroxybenzoic acid with the formula C6H2(OH)3CO2H. It is classified as a phenolic acid. It is found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. It is a white solid, although samples are typically brown owing to partial oxidation. Salts and esters of gallic acid are termed "gallates".

<span class="mw-page-title-main">Liquid smoke</span> Edible chemical compound

Liquid smoke is a water-soluble yellow to red liquid used as a flavoring as a substitute for cooking with wood smoke while retaining a similar flavor. It can be used to flavor any meat or vegetable. It is available as pure condensed smoke from various types of wood, and as derivative formulas containing additives.

<span class="mw-page-title-main">Diphenylamine</span> Chemical compound

Diphenylamine is an organic compound with the formula (C6H5)2NH. The compound is a derivative of aniline, consisting of an amine bound to two phenyl groups. The compound is a colorless solid, but commercial samples are often yellow due to oxidized impurities. Diphenylamine dissolves well in many common organic solvents, and is moderately soluble in water. It is used mainly for its antioxidant properties. Diphenylamine is widely used as an industrial antioxidant, dye mordant and reagent and is also employed in agriculture as a fungicide and antihelmintic.

Proanthocyanidins are a class of polyphenols found in many plants, such as cranberry, blueberry, and grape seeds. Chemically, they are oligomeric flavonoids. Many are oligomers of catechin and epicatechin and their gallic acid esters. More complex polyphenols, having the same polymeric building block, form the group of tannins.

<i>Tara spinosa</i> Species of legume

Tara spinosa, commonly known as tara (Quechua), also known as Peruvian carob or spiny holdback, is a small leguminous tree or thorny shrub native to Peru. T. spinosa is cultivated as a source of tannins based on a galloylated quinic acid structure. This chemical structure has been confirmed also by LC–MS. It is also grown as an ornamental plant because of its large colorful flowers and pods.

<span class="mw-page-title-main">Procyanidin</span>

Procyanidins are members of the proanthocyanidin class of flavonoids. They are oligomeric compounds, formed from catechin and epicatechin molecules. They yield cyanidin when depolymerized under oxidative conditions.

<span class="mw-page-title-main">Phenolic content in wine</span> Wine chemistry

The phenolic content in wine refers to the phenolic compounds—natural phenol and polyphenols—in wine, which include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.

<span class="mw-page-title-main">Phlobaphene</span>

Phlobaphenes are reddish, alcohol-soluble and water-insoluble phenolic substances. They can be extracted from plants, or be the result from treatment of tannin extracts with mineral acids. The name phlobaphen come from the Greek roots φλoιὀς (phloios) meaning bark and βαφή (baphe) meaning dye.

A hydrolysable tannin or pyrogallol-type tannin is a type of tannin that, on heating with hydrochloric or sulfuric acids, yields gallic or ellagic acids.

<span class="mw-page-title-main">Roburin A</span> Chemical compound

Roburin A is a tannin found in oak wood or oak cork.

<span class="mw-page-title-main">Condensed tannin</span> Polymers formed by the condensation of flavans.

Condensed tannins are polymers formed by the condensation of flavans. They do not contain sugar residues.

<i>Quercus infectoria</i> Species of oak tree

Quercus infectoria or the Aleppo oak is a species of oak well known for producing galls that have been traditionally used for centuries in Asia medicinally while also used in softening leather and in making black dye and ink.

<span class="mw-page-title-main">Aluminium diacetate</span> Chemical compound

Aluminium diacetate, also known as basic aluminium acetate, is a white powder with the chemical formula C4H7AlO5. It is one of a number of aluminium acetates and can be prepared in a reaction of sodium aluminate (NaAlO2) with acetic acid.

Quercitannic acid is one of the two forms of tannic acid found in oak bark and leaves. The other form is called gallotannic acid and is found in oak galls.

<span class="mw-page-title-main">Natural dye</span> Dye extracted from plant or animal sources

Natural dyes are dyes or colorants derived from plants, invertebrates, or minerals. The majority of natural dyes are vegetable dyes from plant sources—roots, berries, bark, leaves, and wood—and other biological sources such as fungi.

<span class="mw-page-title-main">Glossary of dyeing terms</span>

Dyeing is the craft of imparting colors to textiles in loose fiber, yarn, cloth or garment form by treatment with a dye. Archaeologists have found evidence of textile dyeing with natural dyes dating back to the Neolithic period. In China, dyeing with plants, barks and insects has been traced back more than 5,000 years. Natural insect dyes such as Tyrian purple and kermes and plant-based dyes such as woad, indigo and madder were important elements of the economies of Asia and Europe until the discovery of man-made synthetic dyes in the mid-19th century. Synthetic dyes quickly superseded natural dyes for the large-scale commercial textile production enabled by the industrial revolution, but natural dyes remained in use by traditional cultures around the world.

Tergallic acids are trimers of gallic acid, often found naturally in the form of glycosides. Tergallic acid O- or C-glucosides that can be found in acorns of several Quercus (oak) species. The dehydrated tergallic acid C-glucoside and tergallic acid O-glucoside can be characterised in the acorns of Quercus macrocarpa. Dehydrated tergallic-C-glucoside can be found in the cork from Quercus suber.

References

  1. "Tannic acid". American Chemical Society. 15 January 2018.
  2. "Tannic acid". Chemical Book.
  3. Pettinga, C. (1979). "Darvon safety". Science. 204 (4388): 6. Bibcode:1979Sci...204....6P. doi:10.1126/science.432625. PMID   432625.
  4. L'Energie Homo-Hydrogne. Editions Publibook. 2004. pp. 248–. ISBN   978-2-7483-0811-2.
  5. "Quercus Cortex. Oak Bark". Henriette's Herbal Homepage.
  6. Traité de chimie, Volume 2. Jöns Jakob Berzelius (friherre) and Olof Gustaf Öngren, A. Wahlen et Cie., 1838[ page needed ]
  7. Watts, Henry (1868). A Dictionary of chemistry and the allied branches of other sciences. Vol. 5. Longmans, Green, and Company. p. 6.
  8. Etti, C. (1880). "Über die Gerbsäure der Eichenrinde" [About the tannic acid from oak bark]. Monatshefte für Chemie (in German). 1 (1): 262–78. doi:10.1007/BF01517069. S2CID   94578197.
  9. Etti, C. (1883). "Zur Geschichte der Eichenrindegerbsäuren" [On the history of oak bark tannins]. Monatshefte für Chemie (in German). 4 (1): 512–30. doi:10.1007/BF01517990. S2CID   105109992.
  10. Smith, Henryl. (1913). "The Nature of Tea Infusions". The Lancet. 181 (4673): 846. doi:10.1016/S0140-6736(01)03766-7.
  11. Reckford, Courtney (1997). What are the historic and contemporary ethnobotanical uses of native Rhode Island wetlands plants? (PDF) (MA Thesis). OCLC   549678548.[ page needed ]
  12. Sayre, Lucius E. A manual of organic materia medica and pharmacognosy: An introduction to the study of the vegetable Kingdom and the vegetable and animal drugs (PDF) (Fourth ed.). p. 95.
  13. Putt, Earl B.; Seil, Harvey A. (2006). "Government standards for spices". Journal of the American Pharmaceutical Association. 12 (12): 1091–4. doi:10.1002/jps.3080121212.
  14. Acheson, Edward G. (1904) "Egyptianized Clay" in Transactions of the American Ceramic Society. pp. 31–65.
  15. "Food Additive Status List (GRAS); listing for tannic acid". US Food and Drug Administration. 24 October 2019. Retrieved 6 November 2020.
  16. 1 2 EFSA Panel on Additives and Products or Substances used in Animal Feed (2014-10-01). "Scientific Opinion on the safety and efficacy of tannic acid when used as feed flavouring for all animal species". EFSA Journal. 12 (10): 3828. doi: 10.2903/j.efsa.2014.3828 .
  17. Sturmer, J. W. (April 13, 1899). "Pharmaceutical Toxicology". The Pharmaceutical Era. 21: 472–4. ISSN   0096-9125.
  18. "The use of tannic acid in the local treatment of burn wounds: intriguing old and new perspectives". Wounds. 13 (4): 144–58. 2001.
  19. "Medicine: War Wounds". TIME. 18 September 1939. Archived from the original on May 30, 2008.
  20. "Material Safety Data Sheet: Tannic Acid". fscimage.fishersci.com. Retrieved 10 September 2019.
  21. "American Alligator: Species Profile". National Park Service. 17 October 2017. Retrieved 1 November 2018.

General references

The Merck Index, 9th edition, Merck & Co., Rahway, New Jersey, 1976.