Tetrahydrothiophene

Last updated
Tetrahydrothiophene
Tetrahydrothiophene.svg
Tetrahydrothiophene3d.png
Names
Preferred IUPAC name
Thiolane
Other names
Tetrahydrothiophene,
thiophane, tetramethylene sulfide
Identifiers
3D model (JSmol)
AbbreviationsTHT
102392
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.391 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-728-9
PubChem CID
RTECS number
  • XN0370000
UNII
UN number 2412
  • InChI=1S/C4H8S/c1-2-4-5-3-1/h1-4H2 Yes check.svgY
    Key: RAOIDOHSFRTOEL-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C4H8S/c1-2-4-5-3-1/h1-4H2
    Key: RAOIDOHSFRTOEL-UHFFFAOYAY
  • S1CCCC1
Properties
C4H8S
Molar mass 88.17 g·mol−1
Appearancecolorless liquid
Density 0.997 g/mL [1]
Melting point −96 °C (−141 °F; 177 K)
Boiling point 119 °C (246 °F; 392 K)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Stench, flammable, irritant
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
Danger
H225, H302, H312, H315, H319, H332, H412
P210, P233, P240, P241, P242, P243, P261, P264, P270, P271, P273, P280, P301+P312, P302+P352, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P312, P321, P322, P330, P332+P313, P337+P313, P362, P363, P370+P378, P403+P235, P501
Flash point 12 °C (54 °F; 285 K)
200 °C (392 °F; 473 K)
Safety data sheet (SDS) Oakwood
Related compounds
Related compounds
Tetrahydrofuran, Thiophene, Selenolane, Thiazolidine, Dithiolane, Thiane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Tetrahydrothiophene is an organosulfur compound with the formula (CH2)4S. The molecule consists of a five-membered saturated ring with four methylene groups and a sulfur atom. It is the saturated analog of thiophene or the sulfur analog of THF. It is a volatile, colorless liquid with an intensely unpleasant odor. It is also known as thiophane, thiolane, or THT.

Contents

Synthesis and reactions

Tetrahydrothiophene is prepared by the reaction of tetrahydrofuran with hydrogen sulfide. This vapor-phase reaction is catalyzed by alumina and other heterogenous acid catalysts. [2] [3]

This compound is a ligand in coordination chemistry, an example being the complex chloro(tetrahydrothiophene)gold(I). [4]

Oxidation of THT gives the sulfone sulfolane, which is of interest as a polar, odorless solvent:

C4H8S + 2 O → C4H8SO2

Sulfolane is, however, more conventionally prepared from butadiene.

Natural occurrence

Both unsubstituted and substituted tetrahydrothiophenes are reported to occur in nature. For example, tetrahydrothiophene occurs as a volatile from Eruca sativa Mill. (salad rocket) [5] while monocyclic substituted tetrahydrothiophenes have been isolated from Allium fistulosum 'Kujou', [6] Allium sativum (garlic), [7] Allium cepa (onion), [8] Allium schoenoprasum (chives), [9] and Salacia prinoides. [10] Albomycins are a group of tetrahydrothiophene-ring containing antibiotics from streptomyces while biotin and neothiobinupharidine (and other nuphar alkaloids [11] ), are examples of bicyclic and polycyclic tetrahydrothiophene-ring containing natural products, respectively.

Applications

Because of its smell, tetrahydrothiophene has been used as an odorant in LPG, [3] albeit no longer in North America. It is also used as an odorant for natural gas, usually in mixtures containing tert-butylthiol.

Tetrahydrothiophene is a Lewis base classified as a soft base and its donor properties are discussed in the ECW model.

See also

Related Research Articles

<span class="mw-page-title-main">Heterocyclic compound</span> Molecule with one or more rings composed of different elements

A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles.

<span class="mw-page-title-main">Garlic</span> Species of edible plant

Garlic is a species of bulbous flowering plant in the genus Allium. Its close relatives include the onion, shallot, leek, chive, Welsh onion, and Chinese onion. It is native to South Asia, Central Asia and northeastern Iran and has long been used as a seasoning worldwide, with a history of several thousand years of human consumption and use. It was known to ancient Egyptians and has been used as both a food flavoring and a traditional medicine. China produced 73% of the world's supply of garlic in 2021.

<span class="mw-page-title-main">Organic sulfide</span> Organic compound with an –S– group

In organic chemistry, a sulfide or thioether is an organosulfur functional group with the connectivity R−S−R' as shown on right. Like many other sulfur-containing compounds, volatile sulfides have foul odors. A sulfide is similar to an ether except that it contains a sulfur atom in place of the oxygen. The grouping of oxygen and sulfur in the periodic table suggests that the chemical properties of ethers and sulfides are somewhat similar, though the extent to which this is true in practice varies depending on the application.

<span class="mw-page-title-main">Tetrahydrofuran</span> Cyclic chemical compound, (CH₂)₄O

Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent.

<span class="mw-page-title-main">Allicin</span> Chemical compound

Allicin is an organosulfur compound obtained from garlic. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin is unstable and quickly changes into a series of other sulfur-containing compounds such as diallyl disulfide. Allicin is an antifeedant, i.e. the defense mechanism against attacks by pests on the garlic plant.

Thiophene is a heterocyclic compound with the formula C4H4S. Consisting of a planar five-membered ring, it is aromatic as indicated by its extensive substitution reactions. It is a colorless liquid with a benzene-like odor. In most of its reactions, it resembles benzene. Compounds analogous to thiophene include furan (C4H4O), selenophene (C4H4Se) and pyrrole (C4H4NH), which each vary by the heteroatom in the ring.

<span class="mw-page-title-main">Polythiophene</span>

Polythiophenes (PTs) are polymerized thiophenes, a sulfur heterocycle. The parent PT is an insoluble colored solid with the formula (C4H2S)n. The rings are linked through the 2- and 5-positions. Poly(alkylthiophene)s have alkyl substituents at the 3- or 4-position(s). They are also colored solids, but tend to be soluble in organic solvents.

<span class="mw-page-title-main">Allyl group</span> Chemical group (–CH₂–CH=CH₂)

In organic chemistry, an allyl group is a substituent with the structural formula −CH2−HC=CH2. It consists of a methylene bridge attached to a vinyl group. The name is derived from the scientific name for garlic, Allium sativum. In 1844, Theodor Wertheim isolated an allyl derivative from garlic oil and named it "Schwefelallyl". The term allyl applies to many compounds related to H2C=CH−CH2, some of which are of practical or of everyday importance, for example, allyl chloride.

<span class="mw-page-title-main">Ajoene</span> Chemical compound

Ajoene is an organosulfur compound found in garlic (Allium sativum) extracts. It is a colorless liquid that contains sulfoxide and disulfide functional groups. The name (and pronunciation) is derived from "ajo", the Spanish word for garlic. It is found as a mixture of up to four stereoisomers, which differ in terms of the stereochemistry of the central alkene (E- vs Z-) and the chirality of the sulfoxide sulfur (R- vs S-).

<span class="mw-page-title-main">Ethionine</span> Chemical compound

Ethionine is a non-proteinogenic amino acid structurally related to methionine, with an ethyl group in place of the methyl group.

<span class="mw-page-title-main">Benzothiophene</span> Aromatic organic compound

Benzothiophene is an aromatic organic compound with a molecular formula C8H6S and an odor similar to naphthalene (mothballs). It occurs naturally as a constituent of petroleum-related deposits such as lignite tar. Benzothiophene has no household use. In addition to benzo[b]thiophene, a second isomer is known: benzo[c]thiophene.

The terpinenes are a group of isomeric hydrocarbons that are classified as monoterpenes. They each have the same molecular formula and carbon framework, but they differ in the position of carbon-carbon double bonds. α-Terpinene has been isolated from cardamom and marjoram oils, and from other natural sources. β-Terpinene has no known natural source but has been prepared from sabinene. γ-Terpinene and δ-terpinene have been isolated from a variety of plant sources. They are all colorless liquids with a turpentine-like odor.

In organic chemistry, the Paal–Knorr synthesis is a reaction used to synthesize substituted furans, pyrroles, or thiophenes from 1,4-diketones. It is a synthetically valuable method for obtaining substituted furans and pyrroles, which are common structural components of many natural products. It was initially reported independently by German chemists Carl Paal and Ludwig Knorr in 1884 as a method for the preparation of furans, and has been adapted for pyrroles and thiophenes. Although the Paal–Knorr synthesis has seen widespread use, the mechanism wasn't fully understood until it was elucidated by V. Amarnath et al. in the 1990s.

<span class="mw-page-title-main">Sulfolene</span> Chemical compound

Sulfolene, or butadiene sulfone is a cyclic organic chemical with a sulfone functional group. It is a white, odorless, crystalline, indefinitely storable solid, which dissolves in water and many organic solvents. The compound is used as a source of butadiene.

<span class="mw-page-title-main">Alliinase</span> Class of enzyme

In enzymology, an alliin lyase is an enzyme that catalyzes the chemical reaction

Chester J. Cavallito was an American organic chemist. He was particularly known for his work on the chemistry of garlic. Beginning in 1944, with his colleagues, he reported on the isolation from crushed garlic, synthesis and antibiotic activity of a compound he named allicin. Cavallito established that allicin was a member of a class of organosulfur compounds known as thiosulfinates. He also synthesized and reported on the chemical and biological properties of a series of thiosulfinates related to allicin.

<i>Allium</i> Genus of flowering plants in the family Amaryllidaceae

Allium is a genus of monocotyledonous flowering plants with hundreds of species, including the cultivated onion, garlic, scallion, shallot, leek, and chives. The generic name Allium is the Latin word for garlic, and the type species for the genus is Allium sativum which means "cultivated garlic".

<span class="mw-page-title-main">Eric Block</span> American chemist

Eric Block is an American chemist whose research has focused on the chemistry of organosulfur and organoselenium compounds, Allium chemistry, and the chemistry of olfaction. As of 2018, he is Distinguished Professor of Chemistry Emeritus at the University at Albany, SUNY.

<span class="mw-page-title-main">Tetrahydrocannabiphorol</span> Cannabinoid agonist compound

Tetrahydrocannabiphorol (THCP) is a potent phytocannabinoid, a CB1 and CB2 agonist which was known as a synthetic homologue of THC, but for the first time in 2019 was isolated as a natural product in trace amounts from Cannabis sativa. It is structurally similar to Δ9-THC, the main active component of cannabis, but with the pentyl side chain extended to heptyl. Since it has a longer side chain, its cannabinoid effects are "far higher than Δ9-THC itself." Tetrahydrocannabiphorol has a reported binding affinity of 1.2 nM at CB1, approximately 33 times that of Δ9-THC (40 nM at CB1).

<span class="mw-page-title-main">5-Methyl-2-((2-nitrophenyl)amino)-3-thiophenecarbonitrile</span> Organic compound

5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, also known as ROY (red-orange-yellow), is an organic compound which is a chemical intermediate to the drug olanzapine. It has been the subject of intensive study because it can exist in multiple well-characterised crystalline polymorphic forms.

References

  1. Armarego WF, Chai CL (2003). "Purification of Organic Chemicals". Purification of Laboratory Chemicals. p. 361. doi:10.1016/B978-075067571-0/50008-9. ISBN   9780750675710.
  2. Loev, B; Massengale, JT U. S. Patent 2,899,444, "Synthesis of Tetrahydrothiophene", 8/11/1959
  3. 1 2 Jonathan Swanston (2006). "Thiophene". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a26_793.pub2. ISBN   978-3527306732.
  4. Uson R, Laguna A, Laguna M, Briggs DA, Murray HH, Fackler JP (2007). "(Tetrahydrothiophene)Gold(I) or Gold(III) Complexes". Inorganic Syntheses. Vol. 26. pp. 85–91. doi:10.1002/9780470132579.ch17. ISBN   9780470132579. ISSN   1934-4716.
  5. Aissani N, et al. (2006). "Nematicidal Activity of the Volatilome of Eruca sativa on Meloidogyne incognita". Journal of Agricultural and Food Chemistry . 63 (27): 6120–6125. doi:10.1021/acs.jafc.5b02425. PMID   26082278.
  6. Fukaya M, et al. (2018). "Rare Sulfur-Containing Compounds, Kujounins A1 and A2 and Allium Sulfoxide A1, from Allium fistulosum 'Kujou'". Organic Letters . 20 (1): 28–31. doi:10.1021/acs.orglett.7b03234. PMID   29227665.
  7. Block E, et al. (2018). "Ajothiolanes: 3,4-Dimethylthiolane Natural Products from Garlic (Allium sativum)". Journal of Agricultural and Food Chemistry . 66 (39): 10193–10204. doi:10.1021/acs.jafc.8b03638. OSTI   1490686. PMID   30196701. S2CID   52178061.
  8. Aoyagi M, et al. (2011). "Structure and Bioactivity of Thiosulfinates Resulting from Suppression of Lachrymatory Factor Synthase in Onion". Journal of Agricultural and Food Chemistry . 59 (20): 10893–10900. doi:10.1021/jf202446q. PMID   21905712.
  9. Fukaya M, et al. (2019). "Cyclic Sulfur Metabolites from Allium schoenoprasum var. foliosum". Phytochemistry Letters . 29: 125–128. Bibcode:2019PChL...29..125F. doi:10.1016/j.phytol.2018.11.018. S2CID   104387714.
  10. Tanabe G, et al. (2008). "Synthesis and Elucidation of Absolute Stereochemistry of Salaprinol, another Thiosugar Sulfonium Sulfate from the Ayurvedic Traditional Medicine Salacia prinoides". Tetrahedron . 64 (43): 10080–10086. doi:10.1016/j.tet.2008.08.010.
  11. Korotkov A, et al. (2015). "Total Syntheses and Biological Evaluation of Both Enantiomers of Several Hydroxylated Dimeric Nuphar Alkaloids". Angewandte Chemie International Edition . 54 (36): 10604–10607. doi:10.1002/anie.201503934. PMC   4691328 . PMID   26205039.