Tetraoxygen

Last updated

The tetraoxygen molecule (O4), also called oxozone, is an allotrope of oxygen consisting of four oxygen atoms.

Contents

History

Tetraoxygen was first predicted in 1924 by Gilbert N. Lewis, who proposed it as an explanation for the failure of liquid oxygen to obey Curie's law. [1] Though not entirely inaccurate, computer simulations indicate that although there are no stable O4 molecules in liquid oxygen, O2 molecules do tend to associate in pairs with antiparallel spins, forming transient O4 units. [2] In 1999, researchers thought that solid oxygen in its ε-phase, also known as red oxygen, (at pressures above 10 GPa) was O4. [3] However, in 2006, it was shown by X-ray crystallography that this stable phase is in fact octaoxygen (O
8
). [4] Nevertheless, positively charged tetraoxygen has been detected as a short-lived chemical species in mass spectrometry experiments. [5]

Structure

Theoretical calculations have predicted the existence of metastable O4 molecules with two different shapes: a "puckered" square like cyclobutane or S4, [6] and a "pinwheel" with three oxygen atoms surrounding a central one in a trigonal planar formation similar to boron trifluoride or sulfur trioxide. [7] [8] It was previously pointed out that the "pinwheel" O4 molecule should be the natural continuation of the isoelectronic series BO3−
3
, CO2−
3
, NO
3
, [9] and analogous to SO3; that observation served as the basis for the mentioned theoretical calculations.

Theoretical structures of metastable O4.
Tetraoxygen-D2d-3D-balls.png Tetraoxygen-D3h-3D-balls.png
D2d structureD3h structure

In 2001, a team at the University of Rome La Sapienza conducted a neutralization-reionization mass spectrometry experiment to investigate the structure of free O4 molecules. [5] Their results did not agree with either of the two proposed molecular structures, but they did agree with a complex between two O2 molecules, one in the ground state and the other in a specific excited state.

Absorption bands of O4 e.g. at 360, 477 and 577 nm are frequently used to achieve aerosol inversions in atmospheric optical absorption spectroscopy. Due to the known distribution of O2 and therefore also O4, O4 slant column densities can be used to retrieve aerosol profiles which can then be used again in radiative transfer models to model light paths. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Liquid oxygen</span> One of the physical forms of elemental oxygen

Liquid oxygen—abbreviated LOx, LOX, LOXygen or Lox in the aerospace, submarine and gas industries—is the liquid form of molecular oxygen. It was used as the oxidizer in the first liquid-fueled rocket invented in 1926 by Robert H. Goddard, an application which has continued to the present.

<span class="mw-page-title-main">Excited state</span> Quantum states with more energy than the lowest possible amount

In quantum mechanics, an excited state of a system is any quantum state of the system that has a higher energy than the ground state. Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation.

<span class="mw-page-title-main">Singlet oxygen</span> Oxygen with all of its electrons spin paired

Singlet oxygen, systematically named dioxygen(singlet) and dioxidene, is a gaseous inorganic chemical with the formula O=O (also written as 1
[O
2
]
or 1
O
2
), which is in a quantum state where all electrons are spin paired. It is kinetically unstable at ambient temperature, but the rate of decay is slow.

Solid oxygen forms at normal atmospheric pressure at a temperature below 54.36 K (−218.79 °C, −361.82 °F). Solid oxygen O2, like liquid oxygen, is a clear substance with a light sky-blue color caused by absorption in the red part of the visible light spectrum.

<span class="mw-page-title-main">TURBOMOLE</span> Computational chemistry program

TURBOMOLE is an ab initio computational chemistry program that implements various quantum chemistry methods. It was initially developed by the group of Prof. Reinhart Ahlrichs at the University of Karlsruhe. In 2007, TURBOMOLE GmbH, founded by R. Ahlrichs, F. Furche, C. Hättig, W. Klopper, M. Sierka, and F. Weigend, took over the responsibility for the coordination of the scientific development of TURBOMOLE program, for which the company holds all copy and intellectual property rights. In 2018 David P. Tew joined the TURBOMOLE GmbH. Since 1987, this program is one of the useful tools as it involves in many fields of research including heterogeneous and homogeneous catalysis, organic and inorganic chemistry, spectroscopy as well as biochemistry. This can be illustrated by citation records of Ahlrich's 1989 publication which is more than 6700 times as of 18 July 2020. In the year 2014, the second Turbomole article has been published. The number of citations from both papers indicates that the Turbomole's user base is expanding.

<span class="mw-page-title-main">Tetrahedral molecular geometry</span> Central atom with four substituents located at the corners of a tetrahedron

In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are cos−1(−13) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane as well as its heavier analogues. Methane and other perfectly symmetrical tetrahedral molecules belong to point group Td, but most tetrahedral molecules have lower symmetry. Tetrahedral molecules can be chiral.

<span class="mw-page-title-main">Carbon trioxide</span> Chemical compound

Carbon trioxide (CO3) is an unstable oxide of carbon (an oxocarbon). The possible isomers of carbon trioxide include ones with molecular symmetry point groups Cs, D3h, and C2v. The C2v state, consisting of a dioxirane, has been shown to be the ground state of the molecule. Carbon trioxide should not be confused with the stable carbonate ion (CO2−
3
).

<span class="mw-page-title-main">Water model</span> Aspect of computational chemistry

In computational chemistry, a water model is used to simulate and thermodynamically calculate water clusters, liquid water, and aqueous solutions with explicit solvent. The models are determined from quantum mechanics, molecular mechanics, experimental results, and these combinations. To imitate a specific nature of molecules, many types of models have been developed. In general, these can be classified by the following three points; (i) the number of interaction points called site, (ii) whether the model is rigid or flexible, (iii) whether the model includes polarization effects.

<span class="mw-page-title-main">Water cluster</span> Cluster of water molecules held together through hydrogen bonding

In chemistry, a water cluster is a discrete hydrogen bonded assembly or cluster of molecules of water. Many such clusters have been predicted by theoretical models (in silico), and some have been detected experimentally in various contexts such as ice, bulk liquid water, in the gas phase, in dilute mixtures with non-polar solvents, and as water of hydration in crystal lattices. The simplest example is the water dimer (H2O)2.

There are several known allotropes of oxygen. The most familiar is molecular oxygen, present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone. Others are:

<span class="mw-page-title-main">Octaoxygen</span>

Octaoxygen, also known as ε-oxygen or red oxygen, is an allotrope of oxygen consisting of eight oxygen atoms. This allotrope forms above 600 K at pressures greater than 17 GPa.

<span class="mw-page-title-main">Oxocarbon</span> Chemical compounds made of only carbon and oxygen

In chemistry, an oxocarbon or oxide of carbon is a chemical compound consisting only of carbon and oxygen. The simplest and most common oxocarbons are carbon monoxide (CO) and carbon dioxide. Many other stable or metastable oxides of carbon are known, but they are rarely encountered, such as carbon suboxide and mellitic anhydride.

<span class="mw-page-title-main">Carbon pentoxide</span> Chemical compound, unstable molecular oxide of carbon

Carbon pentaoxide, carbon pentoxide or tetraoxolan-5-one is an unstable molecular oxide of carbon. The molecule has been produced and studied at cryogenic temperatures. The molecule is important in atmospheric chemistry and in the study of cold ices in the outer solar system and interstellar space. The substance could form and be present on Ganymede or Triton, moons in the outer solar system.

<span class="mw-page-title-main">Carbon hexoxide</span> Chemical compound

Carbon hexoxide or carbon hexaoxide is an oxide of carbon with an unusually large quantity of oxygen. The molecule has been produced and studied at cryogenic temperatures. The molecule is important in atmospheric chemistry and in the study of cold ices in the outer solar system and interstellar space. The substance could form and be present on Ganymede or Triton, moons in the outer solar system. The molecule consists of a six membered ring with five oxygen and one carbon atom, and one oxygen with a double bond with the carbon.

Helium is the smallest and the lightest noble gas and one of the most unreactive elements, so it was commonly considered that helium compounds cannot exist at all, or at least under normal conditions. Helium's first ionization energy of 24.57 eV is the highest of any element. Helium has a complete shell of electrons, and in this form the atom does not readily accept any extra electrons nor join with anything to make covalent compounds. The electron affinity is 0.080 eV, which is very close to zero. The helium atom is small with the radius of the outer electron shell at 0.29 Å. Helium is a very hard atom with a Pearson hardness of 12.3 eV. It has the lowest polarizability of any kind of atom, however, very weak van der Waals forces exist between helium and other atoms. This force may exceed repulsive forces, so at extremely low temperatures helium may form van der Waals molecules. Helium has the lowest boiling point of any known substance.

<span class="mw-page-title-main">Nitrogen difluoride</span> Chemical compound

Nitrogen difluoride, also known as difluoroamino, is a reactive radical molecule with formula NF2. This small molecule is in equilibrium with its dimer dinitrogen tetrafluoride.

<span class="mw-page-title-main">Solid nitrogen</span> Solid form of the 7th element

Solid nitrogen is a number of solid forms of the element nitrogen, first observed in 1884. Solid nitrogen is mainly the subject of academic research, but low-temperature, low-pressure solid nitrogen is a substantial component of bodies in the outer Solar System and high-temperature, high-pressure solid nitrogen is a powerful explosive, with higher energy density than any other non-nuclear material.

Argon compounds, the chemical compounds that contain the element argon, are rarely encountered due to the inertness of the argon atom. However, compounds of argon have been detected in inert gas matrix isolation, cold gases, and plasmas, and molecular ions containing argon have been made and also detected in space. One solid interstitial compound of argon, Ar1C60 is stable at room temperature. Ar1C60 was discovered by the CSIRO.

The magnesium argide ion, MgAr+ is an ion composed of one ionised magnesium atom, Mg+ and an argon atom. It is important in inductively coupled plasma mass spectrometry and in the study of the field around the magnesium ion. The ionization potential of magnesium is lower than the first excitation state of argon, so the positive charge in MgAr+ will reside on the magnesium atom. Neutral MgAr molecules can also exist in an excited state.

<span class="mw-page-title-main">Chlorosyl fluoride</span> Chemical compound

Chlorosyl fluoride is an inorganic compound of chlorine, fluorine, and oxygen with the chemical formula OClF.

References

  1. Lewis, Gilbert N. (1924). "The Magnetism of Oxygen and the Molecule O4". Journal of the American Chemical Society. 46 (9): 2027–2032. doi:10.1021/ja01674a008.
  2. Oda, Tatsuki; Alfredo Pasquarello (2004). "Noncollinear magnetism in liquid oxygen: A first-principles molecular dynamics study". Physical Review B. 70 (134402): 1–19. Bibcode:2004PhRvB..70m4402O. doi:10.1103/PhysRevB.70.134402. hdl: 2297/3462 . S2CID   123535786.
  3. Gorelli, Federico A.; Lorenzo Ulivi; Mario Santoro; Roberto Bini (1999). "The ε Phase of Solid Oxygen: Evidence of an O4 Molecule Lattice". Physical Review Letters. 83 (20): 4093–4096. Bibcode:1999PhRvL..83.4093G. doi:10.1103/PhysRevLett.83.4093.
  4. Lars F. Lundegaard, Gunnar Weck, Malcolm I. McMahon, Serge Desgreniers and Paul Loubeyre (2006). "Observation of an O8 molecular lattice in the phase of solid oxygen". Nature. 443 (7108): 201–204. Bibcode:2006Natur.443..201L. doi:10.1038/nature05174. PMID   16971946. S2CID   4384225.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. 1 2 Cacace, Fulvio; Giulia de Petris; Anna Troiani (2001). "Experimental Detection of Tetraoxygen". Angewandte Chemie International Edition. 40 (21): 4062–4065. doi:10.1002/1521-3773(20011105)40:21<4062::AID-ANIE4062>3.0.CO;2-X. PMID   12404493.
  6. Hernández-Lamoneda, R.; A. Ramírez-Solís (2000). "Reactivity and electronic states of O4 along minimum energy paths". Journal of Chemical Physics. 113 (10): 4139–4145. Bibcode:2000JChPh.113.4139H. doi:10.1063/1.1288370.
  7. Røeggen, I.; E. Wisløff Nilssen (1989). "Prediction of a metastable D3h form of tetra oxygen". Chemical Physics Letters. 157 (5): 409–414. Bibcode:1989CPL...157..409R. doi:10.1016/0009-2614(89)87272-0.
  8. Hotokka, M. (1989). "Ab initio study of bonding trends in the series BO33−, CO32−, NO3 and O4(D3h)". Chemical Physics Letters. 157 (5): 415–418. Bibcode:1989CPL...157..415H. doi:10.1016/0009-2614(89)87273-2.
  9. Jubert,A.H.; E.L.Varetti (1986). "On the possible existence of the O4 molecule with D3h symmetry". Anales de Química (Spain)82:227-230.
  10. Friess, U. and Monks, P. S. and Remedios, J. J. and Wagner, T. and Platt, U. (2005). "MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols - Retrieval of aerosol properties". Journal of Geophysical Research. 109 (D22): n/a. Bibcode:2004JGRD..10922205W. CiteSeerX   10.1.1.659.6946 . doi:10.1029/2004jd004904.{{cite journal}}: CS1 maint: multiple names: authors list (link)