Trifluoromethyl cation

Last updated
Trifluoromethyl cation
Trifluoromethyl cation.svg
The structure of the cation.
Names
Systematic IUPAC name
Trifluoromethylcarbenium
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/CF3/c2-1(3)4/q+1
    Key: VRLAJHMZTGBAOE-UHFFFAOYSA-N
  • [C+](F)(F)F
Properties
CF3+
Molar mass 69.0054
reacts
Structure
Trigonal planar
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

The trifluoromethyl cation is a molecular cation with a formula of CF+
3
. It is a carbocation due to its positively charged carbon atom. It is part of the family of carbenium ions, with three fluorine atoms as substituents in place of its hydrogen atoms. [1]

Contents

Stability

Compared to methenium (the simplest carbenium ion), trifluoromethyl cation is more stable due to the presence of fluorine atoms. The fluorine atoms have lone pairs of electrons overlapping with the carbon atom. These electrons stabilize the positive charge of the central carbon atom, stabilizing the molecule as a whole. The overlap is effective due to the size of fluorine's p orbital in the molecule. [2]

Synthesis

While electron-donating fluorine lone pairs are present, it does not exist as its own.[ clarification needed ] The production of a CF+
3
cation has been described as "extremely hard". The first relevant reagent, a diaryl(trifluoromethyl) sulfonium salt (Ar
2
S+
CF
3
SbF
6
) was developed in 1984 by reaction of an aryltrifluoromethyl sulfoxide 1 with SF+
3
SbF
6
followed by reaction with an electron-rich arene. Now the reaction of the source of the cation[ clarification needed ] usually uses 5-(trifluoromethyl)dibenzothiophenium tetrafluoroborate as the reagent. [3]

One of the active reagents for making the cation. 5-(Trifluoromethyl)dibenzothiophenium tetrafluoroborate.svg
One of the active reagents for making the cation.

Related Research Articles

<span class="mw-page-title-main">Coordination complex</span> Molecule or ion containing ligands datively bonded to a central metallic atom

A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals, are coordination complexes.

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of a reactant change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state.

<span class="mw-page-title-main">Lewis acids and bases</span> Chemical bond theory

A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any species that has a filled orbital containing an electron pair which is not involved in bonding but may form a dative bond with a Lewis acid to form a Lewis adduct. For example, NH3 is a Lewis base, because it can donate its lone pair of electrons. Trimethylborane () is a Lewis acid as it is capable of accepting a lone pair. In a Lewis adduct, the Lewis acid and base share an electron pair furnished by the Lewis base, forming a dative bond. In the context of a specific chemical reaction between NH3 and Me3B, a lone pair from NH3 will form a dative bond with the empty orbital of Me3B to form an adduct NH3•BMe3. The terminology refers to the contributions of Gilbert N. Lewis.

<span class="mw-page-title-main">Conjugated system</span> System of connected p-orbitals with delocalized electrons in a molecule

In theoretical chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented as having alternating single and multiple bonds. Lone pairs, radicals or carbenium ions may be part of the system, which may be cyclic, acyclic, linear or mixed. The term "conjugated" was coined in 1899 by the German chemist Johannes Thiele.

<span class="mw-page-title-main">Aromaticity</span> Chemical property

In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by August Wilhelm Hofmann in 1855. There is no general relationship between aromaticity as a chemical property and the olfactory properties of such compounds.

A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group.

<span class="mw-page-title-main">Carbocation</span> Ion with a positively charged carbon atom

A carbocation is an ion with a positively charged carbon atom. Among the simplest examples are the methenium CH+
3
, methanium CH+
5
and vinyl C
2
H+
3
cations. Occasionally, carbocations that bear more than one positively charged carbon atom are also encountered.

<span class="mw-page-title-main">Lewis structure</span> Diagrams for the bonding between atoms of a molecule and lone pairs of electrons

Lewis structures – also called Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDs) – are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons that may exist in the molecule. A Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. The Lewis structure was named after Gilbert N. Lewis, who introduced it in his 1916 article The Atom and the Molecule. Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.

In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. Because electrophiles accept electrons, they are Lewis acids. Most electrophiles are positively charged, have an atom that carries a partial positive charge, or have an atom that does not have an octet of electrons.

In electrophilic aromatic substitution reactions, existing substituent groups on the aromatic ring influence the overall reaction rate or have a directing effect on positional isomer of the products that are formed.

In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is R−:C−R' or R=C: where the R represents substituents or hydrogen atoms.

<span class="mw-page-title-main">Intercalation (chemistry)</span> Reversible insertion of an ion into a material with layered structure

In chemistry, intercalation is the reversible inclusion or insertion of a molecule into layered materials with layered structures. Examples are found in graphite and transition metal dichalcogenides.

Anions that interact weakly with cations are termed non-coordinating anions, although a more accurate term is weakly coordinating anion. Non-coordinating anions are useful in studying the reactivity of electrophilic cations. They are commonly found as counterions for cationic metal complexes with an unsaturated coordination sphere. These special anions are essential components of homogeneous alkene polymerisation catalysts, where the active catalyst is a coordinatively unsaturated, cationic transition metal complex. For example, they are employed as counterions for the 14 valence electron cations [(C5H5)2ZrR]+ (R = methyl or a growing polyethylene chain). Complexes derived from non-coordinating anions have been used to catalyze hydrogenation, hydrosilylation, oligomerization, and the living polymerization of alkenes. The popularization of non-coordinating anions has contributed to increased understanding of agostic complexes wherein hydrocarbons and hydrogen serve as ligands. Non-coordinating anions are important components of many superacids, which result from the combination of Brønsted acids and Lewis acids.

<span class="mw-page-title-main">Carbenium ion</span> Class of ions

A carbenium ion is a positive ion with the structure RR′R″C+, that is, a chemical species with carbon atom having three covalent bonds, and it bears a +1 formal charge. But IUPAC confuses coordination number with valence, incorrectly considering carbon in carbenium as trivalent.

<span class="mw-page-title-main">Methanium</span> Ion of carbon with five hydrogens

In chemistry, methanium is a complex positive ion with formula [CH5]+ or [CH3(H2)]+, bearing a +1 electric charge. It is a superacid and one of the onium ions, indeed the simplest carbonium ion.

<span class="mw-page-title-main">Trifluoromethyl group</span> Functional group

The trifluoromethyl group is a functional group that has the formula -CF3. The naming of is group is derived from the methyl group (which has the formula -CH3), by replacing each hydrogen atom by a fluorine atom. Some common examples are trifluoromethane H–CF
3
, 1,1,1-trifluoroethane H
3
C
CF
3
, and hexafluoroacetone F
3
C
–CO–CF
3
. Compounds with this group are a subclass of the organofluorines.

A non-bonding orbital, also known as non-bonding molecular orbital (NBMO), is a molecular orbital whose occupation by electrons neither increases nor decreases the bond order between the involved atoms. Non-bonding orbitals are often designated by the letter n in molecular orbital diagrams and electron transition notations. Non-bonding orbitals are the equivalent in molecular orbital theory of the lone pairs in Lewis structures. The energy level of a non-bonding orbital is typically in between the lower energy of a valence shell bonding orbital and the higher energy of a corresponding antibonding orbital. As such, a non-bonding orbital with electrons would commonly be a HOMO.

<span class="mw-page-title-main">Oxocarbenium</span>

An oxocarbeniumion is a chemical species characterized by a central sp2-hybridized carbon, an oxygen substituent, and an overall positive charge that is delocalized between the central carbon and oxygen atoms. An oxocarbenium ion is represented by two limiting resonance structures, one in the form of a carbenium ion with the positive charge on carbon and the other in the form of an oxonium species with the formal charge on oxygen. As a resonance hybrid, the true structure falls between the two. Compared to neutral carbonyl compounds like ketones or esters, the carbenium ion form is a larger contributor to the structure. They are common reactive intermediates in the hydrolysis of glycosidic bonds, and are a commonly used strategy for chemical glycosylation. These ions have since been proposed as reactive intermediates in a wide range of chemical transformations, and have been utilized in the total synthesis of several natural products. In addition, they commonly appear in mechanisms of enzyme-catalyzed biosynthesis and hydrolysis of carbohydrates in nature. Anthocyanins are natural flavylium dyes, which are stabilized oxocarbenium compounds. Anthocyanins are responsible for the colors of a wide variety of common flowers such as pansies and edible plants such as eggplant and blueberry.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

<span class="mw-page-title-main">Stereoelectronic effect</span> Affect on molecular properties due to spatial arrangement of electron orbitals

In chemistry, primarily organic and computational chemistry, a stereoelectronic effect is an effect on molecular geometry, reactivity, or physical properties due to spatial relationships in the molecules' electronic structure, in particular the interaction between atomic and/or molecular orbitals. Phrased differently, stereoelectronic effects can also be defined as the geometric constraints placed on the ground and/or transition states of molecules that arise from considerations of orbital overlap. Thus, a stereoelectronic effect explains a particular molecular property or reactivity by invoking stabilizing or destabilizing interactions that depend on the relative orientations of electrons in space.

References

  1. "Trifluoromethyl cation". webbook.nist.gov. Retrieved 2019-05-18.
  2. Wade, L. G. (2013). Organic Chemistry. Glenview, IL: Pearson Education, Inc. pp. 162–163. ISBN   978-0-321-76841-4.
  3. Barata-Vallejo, Sebastián; Lantaño, Beatriz; Postigo, Al (2014). "Recent Advances in Trifluoromethylation Reactions with Electrophilic Trifluoromethylating Reagents". Chemistry – A European Journal. 20 (51): 16806–16829. doi:10.1002/chem.201404005. hdl: 11336/30347 . ISSN   1521-3765. PMID   25335765.